Ta có \(\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}=\dfrac{n+2-n}{n\left(n+1\right)\left(n+2\right)}=\dfrac{2}{n\left(n+1\right)\left(n+2\right)}\)
Áp dụng:
\(\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+...+\dfrac{1}{10\cdot11\cdot12}\\ =\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+...+\dfrac{1}{10\cdot11}-\dfrac{1}{11\cdot12}\\ =\dfrac{1}{2}-\dfrac{1}{11\cdot12}=\dfrac{1}{2}-\dfrac{1}{132}=\dfrac{65}{132}\)
Ta có \(\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}=\dfrac{n+2-n}{n\left(n+1\right)\left(n+2\right)}=\dfrac{2}{n\left(n+1\right)\left(n+2\right)}\)
Áp dụng
\(\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+...+\dfrac{1}{10\cdot11\cdot12}\\ =\dfrac{1}{2}\left(\dfrac{2}{1\cdot2\cdot3}+\dfrac{2}{2\cdot3\cdot4}+...+\dfrac{2}{10\cdot11\cdot12}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+..+\dfrac{1}{10\cdot11}-\dfrac{1}{11\cdot12}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{11\cdot12}\right)=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{132}\right)=\dfrac{1}{2}\cdot\dfrac{65}{132}=\dfrac{65}{264}\)
Ta có: \(\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}=\dfrac{2}{n\left(n+1\right)\left(n+2\right)}\)
Đặt \(A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{10.11.12}\)
\(\Leftrightarrow2A=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{10.11.12}\)
\(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{10.11}-\dfrac{1}{11.12}\)
\(=\dfrac{1}{2}-\dfrac{1}{11.12}=\dfrac{65}{132}\)
\(\Rightarrow A=\dfrac{65}{132}:2=\dfrac{65}{264}\)