tim các số a,b,c biết : 3a=4b=6c và 2b-a+c=10
tìm các số a, b, c ; biết 3a=4b=6c và 2b - a +c = 10
bn dùng pp thế hoặc dẫy tỉ số bằng nhau gì cx đc
Theo bài ra ta cs
\(3a=4b=6c\Rightarrow\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}\)
và \(2b-a+c=10\)
ADTC dãy tỉ số bằng nhau ta cs
\(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}=\frac{2b-a+c}{2.\frac{1}{4}-\frac{1}{3}+\frac{1}{6}}=\frac{10}{\frac{1}{3}}=30\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{\frac{1}{3}}=30\\\frac{b}{\frac{1}{4}}=30\\\frac{c}{\frac{1}{6}}=30\end{cases}\Rightarrow\hept{\begin{cases}a-10\\b=\frac{15}{2}\\c=5\end{cases}}}\)
Tìm các số a,b,c biết 3a=4b=6c và 2b-a+c=10
Từ \(3a=4b=6c\Rightarrow\dfrac{a}{\dfrac{1}{3}}=\dfrac{b}{\dfrac{1}{4}}=\dfrac{c}{\dfrac{1}{6}}\)\(\Rightarrow\dfrac{a}{\dfrac{1}{3}}=\dfrac{2b}{\dfrac{1}{2}}=\dfrac{c}{\dfrac{1}{6}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{\dfrac{1}{3}}=\dfrac{2b}{\dfrac{1}{2}}=\dfrac{c}{\dfrac{1}{6}}=\dfrac{2b-a+c}{\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{6}}=\dfrac{10}{\dfrac{1}{3}}=30\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{\dfrac{1}{3}}=30\Rightarrow a=30\cdot\dfrac{1}{3}=10\\\dfrac{2b}{\dfrac{1}{2}}=30\Rightarrow b=\dfrac{30\cdot\dfrac{1}{2}}{2}=\dfrac{15}{2}\\\dfrac{c}{\dfrac{1}{6}}=30\Rightarrow c=30\cdot\dfrac{1}{6}=5\end{matrix}\right.\)
Ta có:
3a = 4b = 6c \(\Rightarrow\) \(\dfrac{3a}{12}=\dfrac{4b}{12}=\dfrac{6c}{12}\)
\(\Rightarrow\) \(\dfrac{a}{4}=\dfrac{b}{3}=\dfrac{c}{2}\)
\(\Rightarrow\) \(\dfrac{a}{4}=\dfrac{2b}{6}=\dfrac{c}{2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{4}=\dfrac{2b}{6}=\dfrac{c}{2}=\dfrac{2b-a+c}{6-4+2}=\dfrac{10}{4}=2,5\)
Suy ra:
\(\dfrac{a}{4}=2,5\Rightarrow\)a = 10
\(\dfrac{2b}{6}=2,5\Rightarrow2b=15\Rightarrow b=\dfrac{15}{2}=7,5\)
\(\dfrac{c}{2}=2,5\Rightarrow c=5\)
Vậy a = 10 ; b = 7,5 ; c = 5
ta có:
3a=4b=6c
\(\Rightarrow\dfrac{3a}{12}=\dfrac{4b}{12}=\dfrac{6c}{12}\) \(\Rightarrow\dfrac{a}{4}=\dfrac{b}{3}=\dfrac{c}{2}\) \(\Rightarrow\dfrac{2b}{6}=\dfrac{a}{4}=\dfrac{c}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{2b}{6}=\dfrac{a}{4}=\dfrac{c}{2}=\dfrac{2b-a+c}{6-4+2}=\dfrac{10}{4}=\dfrac{5}{2}\) (vì 2b-a+c=10)
\(\Rightarrow\left\{{}\begin{matrix}a=7,5\\b=10\\c=5\end{matrix}\right.\)
Cho các số a,b,c khác 0 và 2/3a=3/4b=5/6c.Tính N=a+2b+3c/4a+5b+6c
Tìm các số a,b,c biết
3a=2b;4b=3c
và
a+4b−5c=−30
A.
a=7;b=15;c=24
B.
a=10;b=15;c=20
C.
a=9;b=14;c=22
D.
a=8;b=16;c=25
a/ \(3a=2b;4b=3c\)
=> \(6a=4b=3c\)
=> \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{4b}{12}=\dfrac{5c}{20}=\dfrac{a+4b-5c}{2+12-20}=\dfrac{-30}{-6}=5\)
=> \(\left\{{}\begin{matrix}a=10\\b=15\\c=20\end{matrix}\right.\)
=> B
Cho ba số thực dương a,b,c thỏa mãn a 2 + b 2 + c 2 - 2 a + 4 b - 6 c = 10 và a + c=2 . Tính giá trị biểu thức P = 3a + 2b + c khi Q = a 2 + b 2 + c 2 - 14 a - 8 b + 18 c đạt giá trị lớn nhất.
A. 10
B. -10
C. 12
D. -12
Đáp án D
Bài toán trở thành: Tìm M nằm trên đường tròn giao tuyến của mặt cầu (S) và mặt phẳng (P) sao cho KM lớn nhất
Tìm các số a, b, c biết rằng: 3a = 2b; 4b = 5c và a – b + c = –56. Kết quả là:
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{2}=\dfrac{b}{3}\\\dfrac{b}{5}=\dfrac{c}{4}\end{matrix}\right.\Leftrightarrow\dfrac{a}{10}=\dfrac{b}{15}=\dfrac{c}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{10}=\dfrac{b}{15}=\dfrac{c}{12}=\dfrac{a-b+c}{10-15+12}=\dfrac{-56}{7}=-8\)
Do đó: a=-80; b=-120; c=-96
tim cac so thuc a,b,c biet 3a-2b/4=2c-4a/3=4b-3c/2 va |a|-|b|-|c|=-10
Ta có \(\frac{3a-2b}{4}=\frac{2c-4a}{3}=\frac{4b-3c}{2}\)
=> \(\frac{12a-8b}{16}=\frac{6c-12a}{9}=\frac{8b-6c}{4}=\frac{12a-8b+6c-12a+8b-6c}{16+9+4}=\frac{0}{29}=0\)
=> \(\hept{\begin{cases}12a-8b=0\\6c-12a=0\\8b-6c=0\end{cases}}\Rightarrow\hept{\begin{cases}12a=8b\\6c=12a\\8b=6c\end{cases}}\Rightarrow\hept{\begin{cases}3a=2b\\2c=4a\\4b=3c\end{cases}}\Rightarrow\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{a}{2}=\frac{c}{4}\\\frac{c}{4}=\frac{b}{3}\end{cases}}\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)
=> \(\frac{\left|a\right|}{\left|2\right|}=\frac{\left|b\right|}{\left|3\right|}=\frac{\left|c\right|}{\left|4\right|}=\frac{\left|a\right|-\left|b\right|-\left|c\right|}{\left|2\right|-\left|3\right|-\left|4\right|}=\frac{-10}{2-3-4}=\frac{-10}{-5}=2\)
=> \(\hept{\begin{cases}a=\pm4\\b=\pm6\\c=\pm8\end{cases}}\)Vì mẫu số cùng dấu => Tử số cùng dấu
=> Các cặp (a;b;c) tìm được là (4;6;8) ; (-4;-6;-8)
a) Tìm a,b,c biết 3a = 5b = 6c và 3c - 2a = 10
b) Tìm a,b,c biết 3a = 4b ; 6b = 5c và 2c - 3b + a = -22
Ai làm đc mik co phiếu bé ngoan! (nghĩa là mik tik cho nhé!)
\(a=\frac{5}{3}b\); \(c=\frac{5}{6}b\)
\(\Rightarrow3.\frac{5}{6}b-2.\frac{5}{3}b=10\)
\(\Leftrightarrow\frac{-5}{6}b=10\)
\(\Leftrightarrow b=-12\)
b, Tương tự
Bài làm:
a) \(3a=5b=6c\)
\(\Leftrightarrow\frac{a}{10}=\frac{b}{6}=\frac{c}{5}\)
Áp dụng t/c của dãy tỉ số bằng nhau:
\(\frac{a}{10}=\frac{b}{6}=\frac{c}{5}=\frac{3c-2a}{15-20}=\frac{10}{-5}=-2\)
\(\Rightarrow\hept{\begin{cases}a=-20\\b=-12\\c=-10\end{cases}}\)
b) Ta có: \(3a=4b\Leftrightarrow\frac{a}{4}=\frac{b}{3}\Leftrightarrow\frac{a}{20}=\frac{b}{15}\left(1\right)\)
và \(6b=5c\Leftrightarrow\frac{b}{5}=\frac{c}{6}\Leftrightarrow\frac{b}{15}=\frac{c}{18}\left(2\right)\)
Từ (1) và (2) => \(\frac{a}{20}=\frac{b}{15}=\frac{c}{18}\)
Áp dụng t/c của dãy tỉ số bằng nhau:
\(\frac{a}{20}=\frac{b}{15}=\frac{c}{18}=\frac{2c-3b+a}{36-45+20}=\frac{-22}{11}=-2\)
\(\Rightarrow\hept{\begin{cases}a=-40\\b=-30\\c=-36\end{cases}}\)
\(a,3a=5b=6c< =>\frac{a}{10}=\frac{b}{6}=\frac{c}{5}\)
Theo tính chất của dãy tỉ số bằng nhau :
\(\frac{3c}{15}=\frac{2a}{20}=\frac{3c-2a}{15-20}=\frac{10}{-5}=-2\)
\(< =>\hept{\begin{cases}a=-20\\b=-12\\c=-10\end{cases}}\)
cho các số a,b,c thỏa mãn 3a-2b/4=2c-4a/3=4b-3c/2 tính giá trị biểu thức A=3a+2b-c/3a-2b+c + 2a^2-b^2+c^2/2a^2+b^2-c^2
làm ơn trả lời hộ mk với ah mai mk phải nộp bài r