Tìm giá trị nhỏ nhất
D=x2-3.x+5
E=x2 +14x+y2-2y+7
G=x2+4xy+2y2-22y+173
Tìm giá trị nhỏ nhất:
a/ P=x2+y2-6x-2y+17
b/ Q=x2+xy+y2-3x-3y+999
c/ R=2x2+2xy+y2-2x+2y+15
d/ S=x2+26y2-10xy+14x-76y+59
e/ T=x2-4xy+5y2+10x-22y+28
Giúp mình với nha!
Tìm giá trị nhỏ nhất:
a) x2+14x+y2-2y+7
b) x2+4xy+2y2-22y+173
x^2 + 14x + y^2 - 2y + 7
( x^2 + 14 x+ 49 ) + ( y - 2y + 1) -43
( x-7)^2 + ( y-1)^2 - 43
Vậy Min của biểu thức là : -43 khi \(\hept{\begin{cases}\left(x-7\right)^2\\\left(y-1\right)^2=0\end{cases}}=0\) \(\Leftrightarrow\hept{\begin{cases}x-7=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=7\\y=1\end{cases}}\)
phần b sao tương tự được
xem lại b có sai đề ko nhé
Tìm giá trị nhỏ nhất của biểu thức
a) x2+10x+27
b)x2+x+7 c)x2-12x+37 d) x2-3x+5
e)x2+14x+y2-2y+7 g)x2+4xy+2y2-22y+173
tìm GTNN của các bt
a, A=2x2+y2-2xy-2x+3
b,B=x2-2xy+2y2+2x-10y+17
c,C=x2-xy+y2-2y-2x
d,D=x2+xy+y2-3y-3x
e,E=2x2+2xy +5y2-8x-22y
A= 2x^2 + y^2 - 2xy -2x+3
A= x^2-2xy + y^2 + x^2 - 2x+ 1 +2
A= (x-y)^2 + (x-1)^2 + 2
(x-y)^2> hoặc = 0 với mọi giá trị của x
(x-1)^2 > hoặc =0 với mọi giá trị của x
=> (x-y)^2 + (x-1)^2 > hoặc =0 với mọi giá trị của x
=> (x-y)^2 + (x-1)^2 + 2 > hoặc =2
=> A lớn hơn hoặc bằng 2
=> GTNN của A=2 tại x=y=1
Bài 6:Tìm giá trị lớn nhất của biểu thức
a) A=-x2+6x-11 b) B=5-8x-x2 c) C=4x-x2+1
Bài 7:Tìm giá trị nhỏ nhất của biểu thức
a) A=x2-6x+11 b) B=x2-2x+y2+4y+8 c) C=x2-4xy+5y2+10x-22y+28
Bài 6:
a) Ta có: \(A=-x^2+6x-11\)
\(=-\left(x^2-6x+11\right)\)
\(=-\left(x-3\right)^2-2\le-2\forall x\)
Dấu '=' xảy ra khi x=3
b) Ta có: \(B=-x^2-8x+5\)
\(=-\left(x^2+8x-5\right)\)
\(=-\left(x^2+8x+16-21\right)\)
\(=-\left(x+4\right)^2+21\le21\forall x\)
Dấu '=' xảy ra khi x=-4
c) Ta có: \(C=-x^2+4x+1\)
\(=-\left(x^2-4x-1\right)\)
\(=-\left(x^2-4x+4-5\right)\)
\(=-\left(x-2\right)^2+5\le5\forall x\)
Dấu '=' xảy ra khi x=2
Bài 7:
a) Ta có: \(x^2-6x+11\)
\(=x^2-6x+9+2\)
\(=\left(x-3\right)^2+2\ge2\forall x\)
Dấu '=' xảy ra khi x=3
Tìm giá trị nhỏ nhất của biểu thức:
C = x2 - 4xy + 5y2 +10x - 22y +28
\(C=\left(x^2+4y^2+25-4xy+10x-20y\right)+\left(y^2-2y+1\right)+2\)
\(C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
\(C_{min}=2\) khi \(\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)
tìm Giá trị nhỏ nhất trong các đa thức sau
A= x2-20x+101
B= 2x2+40x-1
C= x2-4xy+5y2-2y+28
D= (x-2) (x-5) (x2-7x-10)
Giải giúp e vs ạ (giải chi tiết cho e vs ạ để e dễ hiểu hơn)
a: Ta có: \(A=x^2-20x+101\)
\(=x^2-20x+100+1\)
\(=\left(x-10\right)^2+1\ge1\forall x\)
Dấu '=' xảy ra khi x=10
- Hằng đẳng thức -
Bài 1 : Tìm giá trị nhỏ nhất của biểu thức
a. C = x2 - 6x + 11
b. D = (x-1) (x+2) (x+3) (x+6)
c. x2 -4x +y2 -8y +6
d. G = x2 -4xy +5y2 =10x - 22y + 28
* Hướng dẫn : câu d. G = (x-2+5)2 + (y-1)2 +2 lớn hơn hoặc bằng 2
____________ GIÚP MÌNH VỚI . MIK CẦN GẤP_____________
<=> xaa ) C= x2-6x + 11= (x-3)2 +2
ta co : (x-3)2 + > hoặc = 2
=> C đạt giá trị nhỏ nhất khi C=2
<=> x=3
b) D =(x-1) (x+2)(x+3)(x+6)
= [ (x-1)(x+6)][(x+2)(x+3)]
=(x2 +5x -6)(x2+5x +6)
=(x2+5x )2 - 36
ta có (x2 +5x)2 -36 luôn > hoặc = -36
=> D đạt GTNN khi D = -36
<=>(x2 + 5x)2 =0
=> x = 0 hoac x =-5
c) E = x2 - 4x + y2 - 8y + 6
=(x2 -4x +4 ) + (y2 - 8y +16 ) -14
= (x -2)2 +( y-4)2 -14
ta co (x-2)2 + (y-4)2 -14 luôn > hoặc = -14
=> E dat GTNN khi E = -14
<=> (x-2)2 =0 va (y-4)2 =0
<=> x =2 va y=4
d) G =x2 -4xy +5y2 + 10x -22y + 28 ( de sai nha ban )
= [(x2 - 4xy + 4y2 ) + 10x -20y +25 ]+ ( y2 -2y +1 ) +2
= [(x-2y)2 + 10x - 20y + 25 ] + (y-1)2 +2
= [( x-2y)2 + 2. 5 (x-2y) + 25 ] + (y-1)2 +2
= (x-2y +5)2 + ( y-1)2 +2
ta co (x-2y +5 )2 + (y-1)2 +2 luôn > hoặc = 0
=> G đạt GTNN khi (x-2y+5 )2=0 hoac (y-1)2 =0
<=> y-1 = 0 => y = 1
,=> x =-3
BÀI 11:Tìm giá trị nhỏ nhất của biểu thức:
a. A = x2 – 6x + 11
b. B = 2x2 – 20x + 101
c. C = x2 – 4xy + 5y2 + 10x – 22y + 28
\(A=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\ge2\\ A_{min}=2\Leftrightarrow x=3\\ B=2\left(x^2-10x+25\right)+51=2\left(x-5\right)^2+51\ge51\\ B_{min}=51\Leftrightarrow x=5\\ C=\left[\left(x^2-4xy+4y^2\right)+10\left(x-2y\right)+25\right]+\left(y^2-2y+1\right)+2\\ C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\\ C_{min}=2\Leftrightarrow\left\{{}\begin{matrix}x-2y+5=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2y-5=2-5=-3\\y=1\end{matrix}\right.\)
a) \(A=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\ge2\)
\(minA=2\Leftrightarrow x=3\)
b) \(B=2\left(x^2-10x+25\right)+51=2\left(x-5\right)^2+51\ge51\)
\(minB=51\Leftrightarrow x=5\)
c) \(C=\left[x^2-2x\left(2y-5\right)+\left(2y-5\right)^2\right]+\left(y^2-2y+1\right)+2=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
\(minC=2\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)