Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Le Vinh Quang

Những câu hỏi liên quan
Phạm Tuấn Kiệt
Xem chi tiết
Xem chi tiết
Akai Haruma
31 tháng 1 2018 lúc 0:34

Lời giải:

Ta có:

\(S=1^{22}+2^{22}+3^{22}+...+2015^{22}\)

\(S=2^2(2^{20}-1)+3^2(3^{20}-1)+...+2015^2(2015^{20}-1)+(1^2+2^2+...+2015^2)\)

Xét số tổng quát \(a^2(a^{20}-1)\)

Nếu $a$ chẵn thì \(a\vdots 2\Rightarrow a^2\vdots 4\Rightarrow a^2(a^{20}-1)\vdots 4\)

Nếu $a$ lẻ. Ta biết một số chính phương chia $4$ dư $0,1$. Mà $a$ lẻ nên \(a^2\equiv 1\pmod 4\)

\(\Rightarrow a^{20}\equiv 1^{10}\equiv 1\pmod 4\)

\(\Rightarrow a^2(a^{20}-1)\vdots 4\)

Vậy \(a^2(a^{20}-1)\vdots 4\) (1)

Mặt khác:

Xét $a$ chia hết cho $5$ suy ra \(a^2\vdots 25\Rightarrow a^2(a^{20}-1)\vdots 25\)

Xét $a$ không chia hết cho $5$ tức $(a,5)$ nguyên tố cùng nhau.

Áp dụng định lý Fermat nhỏ: \(a^4\equiv 1\pmod 5\)

Có \(a^{20}-1=(a^4-1)[(a^4)^4+(a^4)^3+(a^4)^2+(a^4)^1+1]\)

\(a^4\equiv 1\pmod 5\rightarrow a^4-1\equiv 0\pmod 5\)

\((a^4)^4+(a^4)^3+(a^4)^2+(a^4)^1+1\equiv 1^4+1^3+1^2+1^1+1\equiv 5\equiv 0\pmod 5\)

Do đó: \(a^{20}-1=(a^4-1)[(a^4)^4+...+1]\vdots 25\)

Vậy trong mọi TH thì \(a^2(a^{20}-1)\vdots 25\) (2)

Từ (1)(2) suy ra \(a^2(a^{20}-1)\vdots 100\)

Do đó: \(2^2(2^{20}-1)+3^2(3^{20}-1)+...+2015^2(2015^{20}-1)\vdots 100\)

Mặt khác ta có công thức sau:

\(1^2+2^2+..+n^2=\frac{n(n+1)(2n+1)}{6}\)

\(\Rightarrow 1^2+2^2+..+2015^2=\frac{2015(2015+1)(2.2015+1)}{6}\equiv 40\pmod {100}\)

Do đó S có tận cùng là 40

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 12 2018 lúc 15:33

B = 2 + 2 2 − 1 + 2 − 2 2 − 1 = ( 2 − 1 + 1 ) 2 + ( 2 − 1 − 1 ) 2 = 2 − 1 + 1 + 1 − 2 − 1 = 2

Bách Vĩ Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 1 2022 lúc 19:54

\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{22}-\dfrac{1}{24}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{12-1}{24}=\dfrac{11}{48}\)

Trần Phương Uyên
Xem chi tiết
HT.Phong (9A5)
1 tháng 9 2023 lúc 9:17

a) \(A=1+2+2^2+...+2^{80}\)

\(2A=2+2^2+2^3+...+2^{81}\)

\(2A-A=2+2^2+2^3+...+2^{81}-1-2-2^2-...-2^{80}\)

\(A=2^{81}-1\)

Nên A + 1 là:

\(A+1=2^{81}-1+1=2^{81}\)

b) \(B=1+3+3^2+...+3^{99}\)

\(3B=3+3^2+3^3+...+3^{100}\)

\(3B-B=3+3^2+3^3+...+3^{100}-1-3-3^2-...-3^{99}\)

\(2B=3^{100}-1\)

Nên 2B + 1 là:

\(2B+1=3^{100}-1+1=3^{100}\)

HT.Phong (9A5)
1 tháng 9 2023 lúc 9:25

2) 

a) \(2^x\cdot\left(1+2+2^2+...+2^{2015}\right)+1=2^{2016}\)

Gọi:

\(A=1+2+2^2+...+2^{2015}\)

\(2A=2+2^2+2^3+...+2^{2016}\)

\(A=2^{2016}-1\)

Ta có:

\(2^x\cdot\left(2^{2016}-1\right)+1=2^{2016}\)

\(\Rightarrow2^x\cdot\left(2^{2016}-1\right)=2^{2016}-1\)

\(\Rightarrow2^x=\dfrac{2^{2016}-1}{2^{2016}-1}=1\)

\(\Rightarrow2^x=2^0\)

\(\Rightarrow x=0\)

b) \(8^x-1=1+2+2^2+...+2^{2015}\)

Gọi: \(B=1+2+2^2+...+2^{2015}\)

\(2B=2+2^2+2^3+...+2^{2016}\)

\(B=2^{2016}-1\)

Ta có:

\(8^x-1=2^{2016}-1\)

\(\Rightarrow\left(2^3\right)^x-1=2^{2016}-1\)

\(\Rightarrow2^{3x}-1=2^{2016}-1\)

\(\Rightarrow2^{3x}=2^{2016}\)

\(\Rightarrow3x=2016\)

\(\Rightarrow x=\dfrac{2016}{3}\)

\(\Rightarrow x=672\)

cô gái buồn
Xem chi tiết
Minh Nguyen
28 tháng 4 2019 lúc 11:08

1.

22 x 22 = 22 x 2 + 22 + 22 x 19

2.

2700  m = 2,7 km

4,5 km/h = 4500 m/h

~ Thiên Mã ~

Nguyễn Nhã Uyên
27 tháng 2 2021 lúc 16:26

lồn to vú sệ

Khách vãng lai đã xóa
Nguyễn Nhã Uyên
27 tháng 2 2021 lúc 16:30

thằng, con nào đọc đc chữ này lồn to

Khách vãng lai đã xóa
chien binh
Xem chi tiết
Nguyễn Tuấn Minh
15 tháng 4 2016 lúc 20:18

Có đúng đề không bạn, tớ nghi đề này do bạn tự chế

chien binh
15 tháng 4 2016 lúc 20:27

hình như vậy thôi xin lỗi 

các câu nhé do sợ nhầm lẫn đề

Nguyễn Thiên Trang
Xem chi tiết
Đặng Quang Hiếu
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 3 2022 lúc 23:42

a: \(=\dfrac{3}{22}\cdot22\cdot\dfrac{3}{11}=3\cdot\dfrac{3}{11}=\dfrac{9}{11}\)

b: \(=\dfrac{5}{6}\cdot\dfrac{2}{5}=\dfrac{1}{3}\)

c: =17/21(3/5+2/5)=17/21

phambaduobg
Xem chi tiết
a mờ am sờ am pam : đcm
9 tháng 1 2022 lúc 18:42

bằng âm 100/1 tỉ 

︵✰Ah
9 tháng 1 2022 lúc 18:43

-5/22 + -1+3/2 - 6/22 = 0

xuanhuy dao
9 tháng 1 2022 lúc 18:44

bằng 0 ấy