Cho f(x)=1+x^3+x^5+x^7+...+x^101
Tính f(1) và f(-1)
1) đa thức f(x)=x^6-x^3+x^2-x+1 có hay ko có nghiệm trên tập hợp số thưc r
2)cho hàm số f(x) xác định với mọi x khác thỏa mãn : f(1)=1 và f(x1 +x2)=f(x1)+f (x2)với mọi x1,x2 jkhacs 0 , x1 + x2 cũng khác 0 và f (1/x)=1/x^2 . f(x) . CMR : f)5/7)=5/7
Cho f(x)= 1 + x^3 + x^5 + x^7 +.........+ x^101.
Tính f(x)=1 f(x)=-1
`f(x)=1+x^3+x^5+.....+x^101`
`=1+(-1-1-.....-1)`
`=1+50.(-1)`
`=-49`
Bài 1. Cho hai đa thức \(f\)(\(x\))= 5\(x\)4+4\(x\)2-2\(x\)+7 và \(g\)(\(x\))=4\(x\)4-2\(x\)3+3\(x\)2+4\(x\)-1
Tính \(f\)(\(x\)) + \(g\)(\(x\)) và \(f\)(\(x\)) - \(f\)(\(x\))
Bài 2. Thực hiện phép nhân.
a) (\(x\) + 3).(\(x\) - 1) b) (4\(x\) + 3).(\(x\)- 2)
c) (2\(x\) + 3).(\(x\) + 1) d) (5\(x\)-2).(\(x\)2- 3\(x\) + 1)
Bài 3. Tính giá trị biểu thức.
a) M=3\(x\)2-2\(x\).(\(x\)-5)+\(x\).(\(x\)-7) tại \(x\)=5
b) J=-3\(x\)2+4\(x\)-5.(\(x\)-2) tại \(x\)=-5
c) N=4\(x\).(2\(x\)-3)-5\(x \).(\(x\)-2) tại\(x\)=1
`1,`
`f(x)+g(x)=(5x^4+4x^2-2x+7)+(4x^4-2x^3+3x^2+4x-1)`
`= 5x^4+4x^2-2x+7+4x^4-2x^3+3x^2+4x-1`
`=(5x^4+4x^4)-2x^3+(4x^2+4x^2)+(-2x+4x)+(7-1)`
`= 9x^4-2x^3+8x^2+2x+6`
Đề phải là `f(x)-g(x)` chứ nhỉ :v?
`f(x)-g(x)=(5x^4+4x^2-2x+7)-(4x^4-2x^3+3x^2+4x-1)`
`= 5x^4+4x^2-2x+7-4x^4+2x^3-3x^2-4x+1`
`= (5x^4-4x^4)+2x^3+(-2x-4x)+(4x^2-3x^2)+(7+1)`
`= x^4+2x^3-6x+x^2+8`
`2,`
`a, (x+3)(x-1)`
`= x(x-1)+3(x-1)`
`= x*x+x*(-1)+3*x+3*(-1)`
`=x^2-x+3x-3`
`= x^2+2x-3`
`b, (4x+3)(x-2)`
`= 4x(x-2)+3(x-2)`
`= 4x*x+4x*(-2)+3*x+3*(-2)`
`= 4x^2-8x+3x-6`
`c, (2x+3)(x+1)`
`= 2x(x+1)+3(x+1)`
`= 2x*x+2x*1+3*x+3*1`
`= 2x^2+2x+3x+3`
`= 2x^2+5x+3`
`d, (5x-2)(x^2-3x+1)`
`= 5x(x^2-3x+1)+(-2)(x^2-3x+1)`
`= 5x*x^2+5x*(-3x)+5x*1+(-2)*x^2+(-2)*(-3x)+(-2)*1`
`= 5x^3-15x^2+5x-2x^2+6x-2`
`= 5x^3-17x^2+11x-2`
cho f(x) mà với mọi x khác 0 thì: f(1)=1;f(1/x)= 1/x2 .f(x) ;f(x1+ x2)=f(x1)+f(x2) với mọi x1+x2k khác 0 và x1;x2 khác 0.CMR: f(5/7)= 5/7
Cho \(f\left(x\right)=x^3-4x+1\).F(1)=3.Tìm F(5)
Cho \(f\left(x\right)=\dfrac{1}{x-1}\) và F(2)=1.Tìm F(x).
Cho f(x) = 1+ x3+x5+x7+...+x101
Tính f(1) và f(-1)
f(1) = 1^1 + 1^3 + 1^5 + 1^7 +... +1^101
= 1+1+1+...+1
Bieu thuc tren co so so hang la : (101-1):2+1=51 so
f(1)=1.51=51
f(-1) = 1 + (-1)^3+(-1)^5+(-1)^7+...+(-1)^101
= 1 + (-1)+(-1)+(-1)+...+(-1)
Trong biểu thuc tren tu (-1)^3 den (-1)^101 co so so hang la : (101-3):2+1=47
f(-1)=1+(-1).47=1+(-1)=0
cho đa thức f(x)= 1+ x^3 + x^5 + x^7 + ..........+ x^101.Tính f(x)=-1 và 2
với f(x)=-1 ta có:
f(-1)=1+ -(1)^3 + (-1)^5 + ..........+ (-1)^101
=1+(-1)+(-1)+...+(-1)
=-49
với f(x)=2 ta có:
f(2)=2+2^3 + 2^5 + 2^7 + ..........+ 2^101
= tự tính
với f(x)=-1 ta có:
f(-1)=1+ -(1)^3 + (-1)^5 + ..........+ (-1)^101
=1+(-1)+(-1)+...+(-1)
=-49
với f(x)=2 ta có:
f(2)=2+2^3 + 2^5 + 2^7 + ..........+ 2^101
cho các hàm số
a, y=f(x)= 3x^2+x+1
tính f(1) f(-1\3) f(2\3) f(-2) f(-4\3)
b, y=f(x)= |2x-9|-3
tính f(2\3) f(-5\4) f(-5) f(4) f(-3\8)
c, y=2x^2-7 lập bảng các 9 trị tương ứng của y khi
x=0 x=-3 x= -1\2 x=2\3
\(a,f\left(1\right)=3\cdot1^2+1+1=5\\ f\left(-\dfrac{1}{3}\right)=3\cdot\left(-\dfrac{1}{3}\right)^2-\dfrac{1}{3}+1=\dfrac{1}{3}-\dfrac{1}{3}+1=1\\ f\left(\dfrac{2}{3}\right)=3\cdot\left(\dfrac{2}{3}\right)^2-\dfrac{2}{3}+1=\dfrac{4}{3}-\dfrac{2}{3}+1=\dfrac{5}{3}\\ f\left(-2\right)=3\cdot\left(-2\right)^2-2+1=11\\ f\left(-\dfrac{4}{3}\right)=3\cdot\left(-\dfrac{4}{3}\right)^2-\dfrac{4}{3}+1=\dfrac{16}{3}-\dfrac{4}{3}+1=5\)
\(b,f\left(\dfrac{2}{3}\right)=\left|2\cdot\dfrac{2}{3}-9\right|-3=\dfrac{23}{3}-3=\dfrac{14}{3}\\ f\left(-\dfrac{5}{4}\right)=\left|2\cdot\left(-\dfrac{5}{4}\right)-9\right|-3=\dfrac{23}{2}-3=\dfrac{17}{2}\\ f\left(-5\right)=\left|2\left(-5\right)-9\right|-3=19-3=16\\ f\left(4\right)=\left|2\cdot4-9\right|-3=1-3=-2\\ f\left(-\dfrac{3}{8}\right)=\left|2\cdot\left(-\dfrac{3}{8}\right)-9\right|-3=\dfrac{39}{4}-3=\dfrac{27}{4}\)
\(c,x=0\Rightarrow y=2\cdot0^2-7=-7\\ x=-3\Rightarrow y=2\cdot\left(-3\right)^2-7=11\\ x=-\dfrac{1}{2}\Rightarrow y=2\cdot\left(-\dfrac{1}{2}\right)^2-7=\dfrac{-13}{2}\\ x=\dfrac{2}{3}\Rightarrow y=2\cdot\left(\dfrac{2}{3}\right)^2-7=-\dfrac{55}{9}\)
Cho f (x) = \(1+x^3+x^5+x^7+...+x^{101}\). Tinh f(1) , f(-1)
* f (1) = 1 + 13 + 15 + 17 + ....... + 1101
(có 51 số hạng 1)
=> f (1) = 51
* f (-1) = 1 + (-1)3 + (-1)5 + (-1)7 + ..... + (-1)101
(có 50 số hạng -1)
=> f (-1) = 1 + (-50)
=> f (-1) = -49