Tính:
a) A = 3/10.12 + 3/12.14 +...+ 3/998.1000
b) B = 2/1.4 + 2/4.7 + 2/7.10 +...+ 2/22.25
Tính giá trị biểu thức :a,A=1.3+3.5+5.7+......+49.51
b, B=2.4+4.6+6.8+.....+48.50
c,C=1.3+2.4+3.5+4.6+......+10.12+11.13+12.14
d,D=1.4+4.7+7.10+....+46.49
giúp mình với ai nhanh mình tick cho
b: 6B=2*4*6+4*6*6+6*8*6+...+46*48*6+48*50*6
=2*4*6-2*4*6+4*6*8-4*6*8+...-44*46*48+46*48*50-46*48*50+48*50*52
=48*50*52
=>B=20800
d: 9D=1*4*9+4*7*9+...+46*49*9
=1*4*2+1*4*7-1*4*7+1*7*10-1*7*10+...+46*49*52-46*49*43
=1*2*4+46*49*52
=117216
=>D=13024
a:
Tính A=3^2/1.4+3^2+4.7+3^2+7.10+...+3^2/97.100
\(A=\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+...+\frac{3^2}{97.100}\)
\(\Rightarrow A=3\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\right)\)
\(\Rightarrow A=3\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(\Rightarrow A=3\left(1-\frac{1}{100}\right)\)
\(\Rightarrow A=3.\frac{99}{100}\)
\(\Rightarrow A=3.\frac{99}{100}\)
\(\Rightarrow A=\frac{297}{100}\)
Tính nhanh
A=3^2/1.4+3^2/4.7+3^2/7.10+....+3^2/97.100
\(A=\frac{9}{1.4}+\frac{9}{4.7}+\frac{9}{7.10}+...+\frac{9}{97.100}\)
\(A=9\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}\right)\)
\(A=9.\frac{1}{3}\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...-\frac{1}{100}\right)\)
\(A=\frac{9}{3}\left(\frac{1}{1}-\frac{1}{100}\right)\)
\(A=3\left(\frac{99}{100}\right)=\frac{297}{100}\)
Tính tổng : 3^2/1.4+3^2/4.7+3^2/7.10+3^2/10.13+.............+3^2/97.100
tính
a) P = 1 / 1.2 + 2 / 2.4 + 3 / 4.7 + ...+ 10 / 46.56
b) A= 3 / 1.2 + 3 / 2.3 + 3 / 3.4 + ....+ 3 / 99.100 chú ý : / là phần nha
c) B = 3 / 1.4 + 3 / 4.7 + 3 / 7.10 + ... + 3 / 100.103
d) C= 5 / 1.4 + 5 / 4.7 + 5 / 7.10 + ...+ 5 / 100.103
e) D= 7 / 1.5 + 7 / 5.9 + 7 / 9.13 +...+ 7 / 101.105
a) \(P=\dfrac{1}{1.2}+\dfrac{2}{2.4}+\dfrac{3}{4.7}+...\dfrac{10}{46.56}\)
\(P=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...\dfrac{1}{46}-\dfrac{1}{56}\)
\(P=1-\dfrac{1}{56}\)
\(P=\dfrac{55}{56}\)
b) \(A=\dfrac{3}{1.2}+\dfrac{3}{2.3}+\dfrac{3}{3.4}+...+\dfrac{3}{99.100}\)
\(A=3\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\right)\)
\(A=3\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(A=3\left(1-\dfrac{1}{100}\right)\)
\(A=3.\dfrac{99}{100}\)
\(A=\dfrac{297}{100}\)
c) \(B=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{100.103}\)
\(B=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{100}-\dfrac{1}{103}\)
\(B=1-\dfrac{1}{103}\)
\(B=\dfrac{102}{103}\)
d) \(C=\dfrac{5}{1.4}+\dfrac{5}{4.7}+\dfrac{5}{7.10}+...+\dfrac{5}{100.103}\)
\(C=\dfrac{5}{3}\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{100.103}\right)\)
\(C=\dfrac{5}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{100}-\dfrac{1}{103}\right)\)
\(C=\dfrac{5}{3}\left(1-\dfrac{1}{103}\right)\)
\(C=\dfrac{5}{3}.\dfrac{102}{103}\)
\(C=\dfrac{170}{103}\)
e) \(D=\dfrac{7}{1.5}+\dfrac{7}{5.9}+\dfrac{7}{9.13}+...+\dfrac{7}{101.105}\)
\(D=\dfrac{7}{4}\left(\dfrac{4}{1.5}+\dfrac{4}{5.9}+\dfrac{4}{9.13}+...+\dfrac{4}{101.105}\right)\)
\(D=\dfrac{7}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{101}-\dfrac{1}{105}\right)\)
\(D=\dfrac{7}{4}\left(1-\dfrac{1}{105}\right)\)
\(D=\dfrac{7}{4}.\dfrac{104}{105}\)
\(D=\dfrac{26}{15}\)
tính
a) P = 1 / 1.2 + 2 / 2.4 + 3 / 4.7 + ...+ 10 / 46.56
b) A= 3 / 1.2 + 3 / 2.3 + 3 / 3.4 + ....+ 3 / 99.100 chú ý : / là phần nha
c) B = 3 / 1.4 + 3 / 4.7 + 3 / 7.10 + ... + 3 / 100.103
d) C= 5 / 1.4 + 5 / 4.7 + 5 / 7.10 + ...+ 5 / 100.103
e) D= 7 / 1.5 + 7 / 5.9 + 7 / 9.13 +...+ 7 / 101.105
a)\(P=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+...+\frac{1}{46}-\frac{1}{56}\)
=\(1-\frac{1}{56}=\frac{55}{56}\)
b)\(A.\frac{1}{3}=\frac{1}{3}.\left(\frac{3}{1.2}+\frac{3}{2.3}+....+\frac{3}{99.100}\right)\)
= \(\frac{1}{3}A=\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{3}{99.100}\)
=> \(\frac{1}{3}A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
=> \(\frac{1}{3}A=1-\frac{1}{100}=\frac{99}{100}\)
=> \(A=\frac{99}{100}.3=\frac{297}{100}\)
c)\(B=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\)
=\(1-\frac{1}{103}=\frac{102}{103}\)
d) \(\frac{3}{5}C=\frac{3}{5}.\left(\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{100.103}\right)\)
=\(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\)
=\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+....+\frac{1}{100}-\frac{1}{103}\)
=\(1-\frac{1}{103}=\frac{102}{103}\)
=>\(C=\frac{102}{103}.\frac{5}{3}=\frac{170}{103}\)
e) \(\frac{4}{7}D=\frac{4}{7}.\left(\frac{7}{1.5}+\frac{7}{5.9}+...+\frac{7}{101.105}\right)\)
=\(\frac{4}{1.5}+\frac{4}{5.9}+...+\frac{4}{101.105}\)
=\(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{101}-\frac{1}{105}\)
=\(1-\frac{1}{105}=\frac{104}{105}\)
=< D=\(\frac{104}{105}.\frac{7}{4}=\frac{26}{15}\)
tính nhanh : A = 3 mũ 2 / 1.4 + 3 mũ 2 /4.7 + 3 mũ 2 / 7.10 + 3 mũ 2 / 10.13 + 3 mũ 2 / 13.16 + .... + 3 mũ 2 / 97.100
\(A=\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+....+\frac{3^2}{97.100}\)
\(A=3.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+....+\frac{3}{97.100}\right)\)
\(A=3.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(A=3.\left(\frac{1}{1}-\frac{1}{100}\right)=3-\frac{3}{100}=\frac{297}{100}\)
\(A=\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+\frac{3^2}{10.13}+\frac{3^2}{13.16}+...+\frac{3^2}{97.100}\)
\(A=\frac{3}{1}-\frac{3}{4}+\frac{3}{4}-\frac{3}{7}+\frac{3}{7}-\frac{3}{10}+\frac{3}{10}-\frac{3}{13}+\frac{3}{13}-\frac{3}{16}+...+\frac{3}{97}-\frac{3}{100}\)
\(A=\frac{3}{1}-\frac{3}{100}\)
\(A=\frac{297}{100}\)
\(A=\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+...+\frac{3^2}{97.100}\)
\(\Rightarrow A=3\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}\right)\)
\(A=3\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(A=3\left(1-\frac{1}{100}\right)\)
\(=3.\frac{99}{100}\)
\(=\frac{297}{100}\)
32/1.4+32/4.7+32/7.10+...+32/97.100
= 3/1 - 3/4 + 3/4 - 3/7 + 3/7 - 3/10 + ... + 3/97 - 3/100 = 3/1 - 3/100 = 297/100
A=\(\dfrac{3^2}{1.4}+\dfrac{3^2}{4.7}+\dfrac{3^2}{7.10}+\dfrac{3^2}{10.13}+\dfrac{3^2}{13.16}+...+\dfrac{3^2}{97.100}\)
\(A=3.\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{97.100}\right)\)
\(A=3.\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)
\(A=3.\left(1-\dfrac{1}{100}\right)\)
\(A=3.\dfrac{99}{100}=\dfrac{297}{100}\)
\(A=\dfrac{3^2}{1\times4}+\dfrac{3^2}{4\times7}+\dfrac{3^2}{7\times10}+\dfrac{3^2}{10\times13}+\dfrac{3^2}{13\times16}...+\dfrac{3^2}{97\times100}\)
\(=3\times\left(\dfrac{3}{1\times4}+\dfrac{3}{4\times7}+\dfrac{3}{7\times10}+\dfrac{3}{10\times13}+\dfrac{3}{13\times16} +...+\dfrac{3}{97\times100}\right)\)
\(=3\times\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{16}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)\(=3\times\left(1-\dfrac{1}{100}\right)\)
\(=3\times\dfrac{99}{100}\)
\(=\dfrac{297}{100}\)
\(=2\dfrac{97}{100}\)
Vậy \(A=2\dfrac{97}{100}\)