Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
haha
Xem chi tiết
Anh Chau
Xem chi tiết
Got many jams
Xem chi tiết
Hồng Phúc
17 tháng 12 2020 lúc 12:41

a, \(\left(\overrightarrow{AC}-\overrightarrow{AB}\right)^2=\overrightarrow{BC}^2\)

\(\Leftrightarrow AC^2+AB^2-2\overrightarrow{AB}.\overrightarrow{AC}=BC^2\)

\(\Leftrightarrow2\overrightarrow{AB}.\overrightarrow{AC}=AB^2+AC^2-BC^2\)

\(\Rightarrow\overrightarrow{AB}.\overrightarrow{AC}=\dfrac{AB^2+AC^2-BC^2}{2}=\dfrac{5^2+8^2-7^2}{2}=20\)

b, \(2\overrightarrow{CA}.\overrightarrow{CB}=CA^2+CB^2-BC^2=CA^2\)

\(\Rightarrow\overrightarrow{CA}.\overrightarrow{CB}=\dfrac{CA^2}{2}=\dfrac{8^2}{2}=32\)

Akai Haruma
17 tháng 12 2020 lúc 14:45

Lời giải:

a) 

\(\overrightarrow{AC}-\overrightarrow{AB}=\overrightarrow{BC}\)

\(\Rightarrow (\overrightarrow{AC}-\overrightarrow{AB})^2=\overrightarrow{BC}^2\Leftrightarrow AB^2+AC^2-2\overrightarrow{AC}.\overrightarrow{AB}=BC^2\)

\(\Leftrightarrow 2\overrightarrow{AB}.\overrightarrow{AC}=AB^2+AC^2-BC^2\) (đpcm)

Ta có:

\(\overrightarrow{AB}.\overrightarrow{AC}=\frac{AB^2+AC^2-BC^2}{2}=\frac{5^2+8^2-7^2}{2}=20\)

\(\cos \angle A=\frac{\overrightarrow{AB}.\overrightarrow{AC}}{|\overrightarrow{AB}|.|\overrightarrow{AC}|}=\frac{20}{5.8}=\frac{1}{2}\)

\(\Rightarrow \angle A=60^0\)

b) 

Tương tự phần a, \(\overrightarrow{CA}.\overrightarrow{CB}=\frac{CA^2+CB^2-AB^2}{2}=\frac{8^2+7^2-5^2}{2}=44\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 8 2017 lúc 15:44

nguyen ho kien cuong
Xem chi tiết
IS
5 tháng 4 2020 lúc 18:48

Câu 1 : mình chỉ cách để cậu sao chéo link này nha .Đầu tiên bạn ấn chuột phải . Rồi ấn zô chữ in , sau đó cậu kéo xuống câu hỏi của cậu , xong cậu sao chép cái link ở dưới này nhá . Ok . Olm ko chụp ảnh đc .

https://scontent-sin6-2.xx.fbcdn.net/v/t1.15752-9/92245240_146128493508405_8939038888257650688_n.jpg?_nc_cat=105&_nc_sid=b96e70&_nc_ohc=X9iGs2rfBIcAX-BKDc4&_nc_ht=scontent-sin6-2.xx&oh=6f79129823e83db81e1c7ec56963fb48&oe=5EAE20C6

Khách vãng lai đã xóa
Lê Hương Giang
Xem chi tiết
Trương Minh Nghĩa
Xem chi tiết
Trương Minh Nghĩa
8 tháng 12 2021 lúc 16:15

Đểu thật

Khách vãng lai đã xóa

mk ko ghõ đc

Khách vãng lai đã xóa
Trương Minh Nghĩa
8 tháng 12 2021 lúc 16:16

Chắc do lỗi rồi

Câu trả lời của bạn đã được quản trị viện duyệt rồi nhé

HT

Khách vãng lai đã xóa
Blue Moon
Xem chi tiết
Nguyễn Thanh Hằng
Xem chi tiết
Phùng Minh Phúc
Xem chi tiết
Akai Haruma
23 tháng 1 2022 lúc 16:40

Lời giải:

Bổ sung điều kiện $a,b$ là các số dương. Áp dụng BĐT Cô-si ta có:

$a+b\geq 2\sqrt{ab}$

$\frac{1}{a}+\frac{1}{b}\geq 2\sqrt{\frac{1}{ab}}$

$\Rightarrow (a+b)(\frac{1}{a}+\frac{1}{b})\geq 2\sqrt{ab}.2\sqrt{\frac{1}{ab}}=4$

Ta có đpcm 

Dấu "=" xảy ra khi $a=b$