Tìm x , y THUỘC Z để
a) \(\frac{2x-1}{x+1}\) nhận giá trị nguyên
Tìm x thuộc Z để
a) \(\frac{x+2}{3-x}\) nhận giá trị nguyên
b) \(\frac{2x-1}{3x+1}\) Nhận giá trị nguyên
Để Q nguyên thì \(x+1⋮2x\)
\(\Leftrightarrow2x+2⋮2x\)
mà \(2x⋮2x\)
nên \(2⋮2x\)
\(\Leftrightarrow2x\inƯ\left(2\right)\)
\(\Leftrightarrow2x\in\left\{1;-1;2;-2\right\}\)
\(\Leftrightarrow x\in\left\{\dfrac{1}{2};-\dfrac{1}{2};1;-1\right\}\)
mà \(x\in Z\)
nên \(x\in\left\{1;-1\right\}\)
Vậy: Khi \(x\in\left\{1;-1\right\}\) thì Q nhận giá trị nguyên
tìm x thuộc z để các biểu thức sau nhận giá trị nguyên x^2-1/2x^2+1
tìm x thuộc Z để M=4x +5 \ 2x +1 nhận giá trị nguyên
\(M=\frac{4x+5}{2x+1}=\frac{4x+2+3}{2x+1}=\frac{2\left(2x+1\right)+3}{2x+1}=\frac{2\left(2x+1\right)}{2x+1}+\frac{3}{2x+1}=2+\frac{3}{2x+1}\)
Để M là số nguyên thì \(\frac{3}{2x+1}\) là số nguyên
=>3 chia hết cho 2x+1
=>2x+1\(\inƯ\left(3\right)\)
=>2x+1\(\in\left\{-3;-1;1;3\right\}\)
=>2x\(\in\left\{-4;-2;0;2\right\}\)
=>x\(\in\left\{-2;-1;0;1\right\}\)
Cho biểu thức :
A= \(\left(\frac{\sqrt{x}-2}{\sqrt{x}-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\frac{x^2-2x+1}{2}\)
a) Xác định x để A tồn tại .
b) Rút gọn .
c) Tìm x thuộc Z để A nhận giá trị nguyên .
d) Tìm x để A nhận giá trị âm .
Cho A =\(\frac{\left(\frac{x^4+2x^3+x^2}{2-x}\right)}{\frac{x^2-1}{x-1}+x}\)
a)Tìm ĐKXĐ cho A
b)Tìm A khi x=1
c)Tìm x để A=1
d)Tìm x thuộc Z để A nhận giá trị nguyên
Cho \(G=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\frac{x^2-2x+1}{2}\)
a, Xác định x để G tồn tại
b, Rút gọn G
c, Tính giá trị của G khi x=0,16
d, Tìm GTLN của G
e, Tìm x thuộc Z để G nhận giá trị nguyên
f, CMR: neus 0<x<1 thì M nhận giá trị dương
g, Tìm x để G nhân giá trị âm.
Bài 1. a) Tìm x, y nguyên biết 1x= 1/6+3y
b) Tìm x thuộc Z để biểu thức A= 2x-1/x+1 có giá trị nguyên
\(a,\dfrac{1}{x}=\dfrac{1}{6}+3y\Leftrightarrow6=x+18xy\Leftrightarrow x\left(18y+1\right)=6\)
Mà \(x,y\in Z\)
\(x\) | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
\(18y+1\) | -1 | -2 | -3 | -6 | 6 | 3 | 2 | 1 |
\(y\) | loại | loại | loại | loại | loại | loại | loại | loại |
Vậy ko có x,y nguyên tm
\(b,A=\dfrac{2\left(x+1\right)-3}{x+1}=2-\dfrac{3}{x+1}\in Z\\ \Leftrightarrow x+1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Leftrightarrow x\in\left\{-4;-2;0;2\right\}\)
tìm x thuộc Z để
2x^2+1/x+2 có giá trị nguyên
\(\frac{2x^2+1}{x+2}\)\(\frac{2x^2+1}{x+2}\)
=> (2*x^3+2*x+1)/x
=> 2*x^3/(x+2)+4*x^2/(x+2)+1/(x+2)
=> 2*(x^2+1)