Cho \(x+\dfrac{1}{x}=a.\) Tính \(x^5+\dfrac{1}{x^5}\) theo a
Bài 1: Cho biểu thức A = 1 - \(\dfrac{\sqrt{x}}{1+\sqrt{x}}\), B = \(\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\)+ \(\dfrac{\sqrt{x}+2}{3-\sqrt{x}}\)- \(\dfrac{10-5\sqrt{x}}{x-5\sqrt{x}+6}\)
(với x ≥ 0, x ≠ 4, x ≠ 9)
a, Tính giá trị của A biết x = 6-2\(\sqrt{5}\)
b, Rút gọn P = A : B
c, Tìm giá trị nhỏ nhất của P
a: Thay \(x=6-2\sqrt{5}\) vào A, ta được:
\(A=1-\dfrac{\sqrt{5}-1}{\sqrt{5}-1+1}=1-\dfrac{\sqrt{5}-1}{\sqrt{5}}=\dfrac{\sqrt{5}}{5}\)
b: Ta có: P=A:B
\(=\left(1-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{5\sqrt{x}-10}{x-5\sqrt{x}+6}\right)\)
\(=\dfrac{1}{\sqrt{x}+1}:\dfrac{x-4\sqrt{x}+3-x+4+5\sqrt{x}-10}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{1}{\sqrt{x}+1}:\dfrac{1}{\sqrt{x}-2}\)
\(=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)
Cho biểu thức:
\(A=\dfrac{\sqrt{x}-1}{\sqrt{x}-5};B=\dfrac{\sqrt{x}+3}{\sqrt{x}+1}+\dfrac{5}{\sqrt{x}-1}+\dfrac{4}{x-1}\), \(x\ge0,x\ne1,x\ne25.\)
a) Chứng minh rằng \(B=\dfrac{\sqrt{x}+6}{\sqrt{x}-1}\).
b) Tính giá trị của A khi x = 49.
c) Tìm giá trị của x để B > 1.
d) So sánh \(C=\left(A.B+\dfrac{x-5}{\sqrt{x}-5}\right).\dfrac{\sqrt{x}-5}{\sqrt{x}}\) với 3 \(\left(x>0,x\ne1,x\ne25\right)\)
b) Thay x=49 vào A, ta được:
\(A=\dfrac{7-1}{7-5}=\dfrac{6}{2}=3\)
a) Ta có: \(B=\dfrac{\sqrt{x}+3}{\sqrt{x}+1}+\dfrac{5}{\sqrt{x}-1}+\dfrac{4}{x-1}\)
\(=\dfrac{x+2\sqrt{x}-3+5\sqrt{x}+5+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x+7\sqrt{x}+6}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}+6}{\sqrt{x}-1}\)
Tính:
a) (6 : \(\dfrac{3}{5}\) \(1\dfrac{1}{6}\) x \(\dfrac{6}{7}\) ) : ( \(4\dfrac{1}{5}\) x \(\dfrac{10}{11}\) + \(5\dfrac{2}{11}\) )
b) (\(1-\dfrac{1}{2}\)) x (\(1-\dfrac{1}{3}\)) x (\(1-\dfrac{1}{4}\)) x ..... x (\(1-\dfrac{1}{2003}\)) x (\(1-\dfrac{1}{2007}\))
Cho biểu thức:A=\(\dfrac{4\sqrt{x}}{\sqrt{x}-5}:\left(\dfrac{\sqrt{x}-2}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+2}+\dfrac{5-2\sqrt{x}}{x+\sqrt{x}-2}\right)\)
a) Rút gọn biểu thức A.
b) Tính giá trị của biểu thức A tại x=81
c) Tìm x sao cho A<4
Lời giải:
ĐKXĐ: $x\geq 0; x\neq 1; x\neq 25$
a)
\(A=\frac{4\sqrt{x}}{\sqrt{x}-5}:\left[\frac{(\sqrt{x}-2)(\sqrt{x}+2)+\sqrt{x}-1}{(\sqrt{x}-1)(\sqrt{x}+2}+\frac{5-2\sqrt{x}}{(\sqrt{x}-1)(\sqrt{x}+2)}\right]\)
\(=\frac{4\sqrt{x}}{\sqrt{x}-5}:\frac{x-4+\sqrt{x}-1+5-2\sqrt{x}}{(\sqrt{x}-1)(\sqrt{x}+2)}\)
\(=\frac{4\sqrt{x}}{\sqrt{x}-5}:\frac{\sqrt{x}(\sqrt{x}-1)}{(\sqrt{x}-1)(\sqrt{x}+2)}=\frac{4\sqrt{x}}{\sqrt{x}-5}:\frac{\sqrt{x}}{\sqrt{x}+2}=\frac{4\sqrt{x}}{\sqrt{x}-5}.\frac{\sqrt{x}+2}{\sqrt{x}}=\frac{4(\sqrt{x}+2)}{\sqrt{x}-5}\)
b) Tại $x=81$ thì $\sqrt{x}=9$.
Khi đó: $A=\frac{4(9+2)}{9-5}=11$
c) $A< 4\Leftrightarrow \frac{\sqrt{x}+2}{\sqrt{x}-5}< 1$
$\Leftrightarrow \frac{7}{\sqrt{x}-5}< 0\Leftrightarrow \sqrt{x}-5< 0$
$\Leftrightarrow 0\leq x< 25$. Kết hợp với ĐKXĐ suy ra: $0\leq x< 25; x\neq 1$
Cho biểu thức: A = \(\dfrac{x^2+3x}{x^2-25}+\dfrac{1}{x+5}\)và B = \(\dfrac{x-5}{x+2}\)(ĐKXĐ:x ≠ 5; -2)
a) Tính giá trị của B khi x = 9
b)Rút gọn biểu thức P=A.B
c) Với x > -2, tìm x để P > \(\dfrac{1}{3}\)
a) \(A=\dfrac{x^2+3x}{x^2-25}+\dfrac{1}{x+5};B=\dfrac{x-5}{x+2}\left(x\ne\pm5;-2\right)\)
Khi \(x=9\) thì :
\(B=\dfrac{9-5}{9+2}=\dfrac{4}{11}\)
b) \(P=A.B\)
\(\Leftrightarrow P=\left[\dfrac{x^2+3x}{x^2-25}+\dfrac{1}{x+5}\right].\dfrac{x-5}{x+2}\)
\(\Leftrightarrow P=\left[\dfrac{x^2+3x}{\left(x+5\right)\left(x-5\right)}+\dfrac{x-5}{\left(x+5\right)\left(x-5\right)}\right].\dfrac{x-5}{x+2}\)
\(\Leftrightarrow P=\left[\dfrac{x^2+4x-5}{\left(x+5\right)\left(x-5\right)}\right].\dfrac{x-5}{x+2}\)
\(\Leftrightarrow P=\left[\dfrac{x^2+5x-x-5}{x+5}\right].\dfrac{1}{x+2}\)
\(\Leftrightarrow P=\left[\dfrac{x\left(x+5\right)-\left(x+5\right)}{x+5}\right].\dfrac{1}{x+2}\)
\(\Leftrightarrow P=\left[\dfrac{\left(x+5\right)\left(x-1\right)}{x+5}\right].\dfrac{1}{x+2}\)
\(\Leftrightarrow P=\dfrac{x-1}{x+2}\)
c) Theo đề bài để
\(P=\dfrac{x-1}{x+2}>\dfrac{1}{3}\left(x>-2\right)\)
\(\Leftrightarrow3\left(x-1\right)>x+2\)
\(\Leftrightarrow3x-3>x+2\)
\(\Leftrightarrow2x>5\)
\(\Leftrightarrow x>\dfrac{5}{2}\left(thỏa,đk:x>-2\right)\)
a) Để tính giá trị của B khi x = 9, ta thay x = 9 vào biểu thức B: B = (x - 5)/(x + 2) - 5/(x + 2) = (9 - 5)/(9 + 2) - 5/(9 + 2) = 4/11 - 5/11 = -1/11
Vậy giá trị của B khi x = 9 là -1/11.
b) Để rút gọn biểu thức P = A.B, ta nhân các thành phần tương ứng của A và B: P = (x^2 + 3x)/(x^2 - 25 + 1) * (x - 5)/(x + 2) = (x(x + 3))/(x^2 - 24) * (x - 5)/(x + 2) = (x(x + 3)(x - 5))/(x^2 - 24)(x + 2)
Vậy biểu thức P được rút gọn thành P = (x(x + 3)(x - 5))/(x^2 - 24)(x + 2).
c) Để tìm giá trị của x khi P > 13 với x > -2, ta giải phương trình: (x(x + 3)(x - 5))/(x^2 - 24)(x + 2) > 13
Giúp với
1) Thu gọn A
\(A=\left(\sqrt{x}-\dfrac{x+2}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{\sqrt{x}-4}{1-x}\right)\)
2) Tính A biết \(x=\left(\dfrac{2-\sqrt{5}}{2+\sqrt{5}}-\dfrac{2+\sqrt{5}}{2-\sqrt{5}}\right):\sqrt{20}\)
\(A=\dfrac{x+\sqrt{x}-x-2}{\sqrt{x}+1}:\dfrac{x-\sqrt{x}+\sqrt{x}-4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\\ A=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\cdot\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\)
\(x=\dfrac{9-4\sqrt{5}-9-4\sqrt{5}}{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}:2\sqrt{5}=\dfrac{-8\sqrt{5}}{-2\sqrt{5}}=4\\ \Leftrightarrow\sqrt{x}=2\\ \Leftrightarrow A=\dfrac{2-1}{2+2}=\dfrac{1}{4}\)
Bài 1: tính
a) 3\(\dfrac{1}{2}\) + 4\(\dfrac{5}{7}\) - 5\(\dfrac{5}{14}\) b) 4\(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) : \(5\dfrac{1}{2}\)
bài 2: tìm X
a) X x \(3\dfrac{1}{3}\) = \(3\dfrac{1}{3}\) : \(4\dfrac{1}{4}\) b) \(5\dfrac{2}{3}\) : X = \(3\dfrac{2}{3}\) - \(2\dfrac{1}{2}\)
các giáo viên olm giúp e vs, e cần gấp lắm!
\(3\dfrac{1}{2}+4\dfrac{5}{7}-5\dfrac{5}{14}\)
= \(\dfrac{7}{2}+\dfrac{33}{7}-\dfrac{75}{14}\)
= \(\dfrac{49}{14}+\dfrac{66}{14}-\dfrac{75}{14}\)
= \(\dfrac{40}{14}=\dfrac{20}{7}\)
\(4\dfrac{1}{2}+\dfrac{1}{2}\div5\dfrac{1}{2}\)
=\(\dfrac{9}{2}+\dfrac{1}{2}\div\dfrac{11}{2}\)
=\(\dfrac{9}{2}+\dfrac{1}{2}\times\dfrac{2}{11}\)
=\(\dfrac{9}{2}+\dfrac{1}{11}\)
=\(\dfrac{101}{22}\)
\(x\times3\dfrac{1}{3}=3\dfrac{1}{3}\div4\dfrac{1}{4}\)
\(x\times\dfrac{10}{3}=\dfrac{10}{3}\div\dfrac{17}{4}\)
\(x\times\dfrac{10}{3}=\dfrac{10}{3}\times\dfrac{4}{17}\)
\(x\times\dfrac{10}{3}=\dfrac{40}{51}\)
\(x=\dfrac{40}{51}\div\dfrac{10}{3}\)
\(x=\dfrac{40}{51}\times\dfrac{3}{10}\)
\(x=\dfrac{120}{510}=\dfrac{12}{51}=\dfrac{4}{7}\)
\(5\dfrac{2}{3}\div x=3\dfrac{2}{3}-2\dfrac{1}{2}\)
\(\dfrac{17}{3}\div x=\dfrac{11}{3}-\dfrac{5}{2}\)
\(\dfrac{17}{3}\div x=\dfrac{7}{6}\)
\(x=\dfrac{17}{3}\div\dfrac{7}{6}\)
\(x=\dfrac{17}{3}\times\dfrac{6}{7}\)
\(x=\dfrac{102}{21}=\dfrac{34}{7}\)
làm đầy đủ theo các bước nhé
Tìm x biết :
a) \(^{\dfrac{4}{9}+x=\dfrac{5}{3}}\)
b)\(\dfrac{3}{4}.x=\dfrac{-1}{2}\)
c) \(\dfrac{3}{7}+\dfrac{5}{7}:x=\dfrac{1}{3}\)
d)\(3\dfrac{1}{4}:\left|2x-\dfrac{5}{12}\right|=\dfrac{39}{16}\)
c.\(\dfrac{3}{7}+\dfrac{5}{7}:x=\dfrac{1}{3}\)
\(\dfrac{5}{7}:x=\dfrac{1}{3}-\dfrac{3}{7}\)
\(\dfrac{5}{7}:x=-\dfrac{2}{21}\)
\(x=\dfrac{5}{7}:-\dfrac{2}{21}\)
\(x=-\dfrac{15}{2}\)
d.\(3\dfrac{1}{4}:\left|2x-\dfrac{5}{12}\right|=\dfrac{39}{16}\)
\(\left|2x-\dfrac{5}{12}\right|=3\dfrac{1}{4}:\dfrac{39}{16}\)
\(\left|2x-\dfrac{5}{12}\right|=\dfrac{4}{3}\)
\(\rightarrow\left[{}\begin{matrix}2x-\dfrac{5}{12}=\dfrac{4}{3}\\2x-\dfrac{4}{12}=-\dfrac{4}{3}\end{matrix}\right.\) \(\rightarrow\left[{}\begin{matrix}2x=\dfrac{7}{4}\\2x=-\dfrac{11}{12}\end{matrix}\right.\) \(\rightarrow\left[{}\begin{matrix}x=\dfrac{7}{8}\\x=-\dfrac{11}{24}\end{matrix}\right.\)
A, \(\dfrac{4}{9}+x=\dfrac{5}{3}\)
\(x\)\(=\dfrac{5}{3}-\dfrac{4}{9}\)
\(x\)\(=\dfrac{11}{9}\)
B,\(\dfrac{3}{4}.x=\dfrac{-1}{2}\)
\(x=\dfrac{-1}{2}:\dfrac{3}{4}\)
\(x=\)\(\dfrac{-2}{3}\)
a)
\(\frac{4}{9} + x = \frac{5}{3}\)
=> \(x = \frac{5}{3}-\frac{4}{9}\)
=> \(x = \) \(\frac{11}{9}\)
Vậy \(x = \dfrac{11}{9}\)
b)
\(\dfrac{3}{4} .x = \dfrac{-1}{2}\)
=> \(x = \dfrac{-1}{2} : \dfrac{3}{4}\)
=> \(x = \dfrac{-2}{3}\)
Vậy \(x = \dfrac{-2}{3}\)
c)
\( \dfrac{3}{7}+ \dfrac{5}{7}:x = \dfrac{1}{3}\)
=> \(\dfrac{5}{7}:x = \dfrac{1}{3}-\) \( \dfrac{3}{7}\)
=> \(\dfrac{5}{7}:x = \dfrac{-2}{21}\)
=> \(x = \dfrac{5}{7}:\dfrac{-2}{21}\)
=> \(x = \dfrac{-15}{2}\)
Vậy \(x = \dfrac{-15}{2}\)
d)
\(3\dfrac{1}{4} : |2x - \dfrac{5}{12} | = \dfrac{39}{16}\)
=> \(\dfrac{13}{4} : |2x - \dfrac{5}{12} | = \dfrac{39}{16}\)
=> \( |2x - \dfrac{5}{12} | =\dfrac{13}{4} : \dfrac{39}{16}\)
=> \(|2x-\dfrac{5}{12} |= \dfrac{4}{3}\)
=> \(\left[\begin{matrix} 2x - \dfrac{5}{12} = \dfrac{4}{3}\\ 2x - \dfrac{5}{12} = \dfrac{4}{3}\end{matrix}\right.\)
=> \(\left[\begin{matrix} 2x = \dfrac{-4}{3}+\dfrac{5}{12}\\ 2x = \dfrac{-4}{3}+\dfrac{5}{12} \end{matrix}\right.\)
=> \(\left[\begin{matrix} 2x = \dfrac{7}{4}\\ 2x = \dfrac{-11}{12} \end{matrix}\right.\)
=> \(\left[\begin{matrix} x = \dfrac{7}{8}\\ x = \dfrac{-11}{24} \end{matrix}\right.\)
Vậy \(x \in \) { \(\dfrac{7}{8} ; \dfrac{-11}{24}\) }
Cho biểu thức A = \(\dfrac{\sqrt{x}-1}{\sqrt{x}-5}\)
B = \(\dfrac{\sqrt{x}+3}{\sqrt{x}+1}+\dfrac{5}{\sqrt{x}-1}+\dfrac{4}{x-1}\)
a) Rút gọn biểu thức B
b) So sánh C =\(\left(A.B+\dfrac{x-5}{\sqrt{x}-5}\right).\dfrac{\sqrt{x}-5}{\sqrt{x}}với3\)
\(a,B=\dfrac{\sqrt{x}+3}{\sqrt{x}+1}+\dfrac{5}{\sqrt{x}-1}+\dfrac{4}{x-1}\left(x\ge0;x\ne1\right)\\ B=\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)+5\left(\sqrt{x}+1\right)+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ B=\dfrac{x+2\sqrt{x}-3+5\sqrt{x}+5+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{x+7\sqrt{x}+6}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+6\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}+6}{\sqrt{x}-1}\)
b: Ta có: \(B=\dfrac{\sqrt{x}+3}{\sqrt{x}+1}+\dfrac{5}{\sqrt{x}-1}+\dfrac{4}{x-1}\)
\(=\dfrac{x+2\sqrt{x}-3+5\sqrt{x}+5+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}+6}{\sqrt{x}-1}\)
\(b,C=\left(\dfrac{\sqrt{x}-1}{\sqrt{x}-5}\cdot\dfrac{\sqrt{x}+6}{\sqrt{x}-1}+\dfrac{x-5}{\sqrt{x}-5}\right)\cdot\dfrac{\sqrt{x}-5}{\sqrt{x}}\\ =\dfrac{\sqrt{x}+6+x-5}{\sqrt{x}-5}\cdot\dfrac{\sqrt{x}-5}{\sqrt{x}}\\ =\dfrac{x+\sqrt{x}+1}{\sqrt{x}}=\sqrt{x}+\dfrac{1}{\sqrt{x}}+1\ge2\sqrt{\sqrt{x}\cdot\dfrac{1}{\sqrt{x}}}+1=2\cdot1+1=3\left(BĐT.cosi\right)\)
Dấu \("="\Leftrightarrow x=1\left(ktm\right)\) nên dấu \("="\) không xảy ra