Giải bất phương trình
1) \(\dfrac{3}{x-1}+2>0\) 2) \(\dfrac{1}{3x+1}-2\le0\)
Giải các bất phương trình sau
1) \(\sqrt{\text{x}^2+1}< 3\) 2) \(\dfrac{\text{x^2}-4x+3}{x^2-4}< 0\)
\(1)\sqrt{x^2+1}< 3.\\ \Leftrightarrow x^2+1< 9.\\ \Leftrightarrow x^2< 8.\\ \Leftrightarrow\left[{}\begin{matrix}x< 2\sqrt{2}.\\x>-2\sqrt{2}.\end{matrix}\right.\)
\(\Leftrightarrow-2\sqrt{2}< x< 2\sqrt{2}.\)
\(2)\dfrac{x^2-4x+3}{x^2-4}< 0.\)
Đặt \(f\left(x\right)=\dfrac{x^2-4x+3}{x^2-4}.\)
\(x^2-4=0.\Leftrightarrow\left[{}\begin{matrix}x=2.\\x=-2.\end{matrix}\right.\\ x^2-4x+3=0.\Leftrightarrow\left[{}\begin{matrix}x=3.\\x=1.\end{matrix}\right.\)
Bảng xét dấu:
\(\Rightarrow f\left(x\right)< 0\Leftrightarrow x\in\left(-2;1\right)\cup\left(2;3\right).\)
Lời giải:
1.
$\sqrt{x^2+1}<3$
$\Leftrightarrow 0\leq x^2+1<9$
$\Leftrightarrow x^2+1<9$
$\Leftrightarrow x^2<8$
$\Leftrightarrow -2\sqrt{2}< x< 2\sqrt{2}$
2.
Xét 2 TH:
TH1: \(\left\{\begin{matrix} x^2-4x+3<0\\ x^2-4>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (x-1)(x-3)<0\\ (x-2)(x+2)>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 1< x< 3\\ x>2 \text{hoặc} x<-2\end{matrix}\right.\)
\(\Leftrightarrow 2< x<3\)
TH2: \(\left\{\begin{matrix} x^2-4x+3>0\\ x^2-4<0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (x-1)(x-3)>0\\ (x-2)(x+2)<0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x>3 \text{hoặc} x<1\\ -2< x< 2\end{matrix}\right.\)
\(\Leftrightarrow -2< x< 1\)
Kết hợp 2 TH suy ra tập nghiệm \(S=(2;3)\cup (-2;1)\)
Giải bất phương trình
a)x\(^2\)-2x=0
b)\(\dfrac{x+1}{x-2}\)-\(\dfrac{5}{x+2}\)=\(\dfrac{12}{x^2-4}\)+1
c)/x-1/-/3x-5/=0
\(x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
b.\(\dfrac{x+1}{x-2}-\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\)
\(ĐK:x\ne\pm2\)
\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x+2\right)-5\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{12+\left(x^2-4\right)}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow\left(x+1\right)\left(x+2\right)-5\left(x-2\right)=12+\left(x^2-4\right)\)
\(\Leftrightarrow x^2+3x+2-5x+10=12+x^2-4\)
\(\Leftrightarrow-2x=-4\)
\(\Leftrightarrow x=2\left(ktm\right)\)
Vậy pt vô nghiệm
\(a,x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
\(b,\dfrac{x+1}{x-2}-\dfrac{5}{x-2}=\dfrac{12}{x^2-4}+1\) (ĐKXĐ : x ≠ 2 ; x ≠ -2)
\(\Rightarrow\left(x+1\right)\left(x+2\right)-5\left(x+2\right)=12+\left(x-2\right)\left(x+2\right)\)
\(\Leftrightarrow x^2+3x+2-5x-10=12+x^2+2x-2x+4\)
\(\Leftrightarrow2x=24\)
\(\Leftrightarrow x=12\left(N\right)\)
câu c chưa học :vv
a)
<=> x (x-2 ) = 0
<=> x =0
x = 2
b)
đkxđ : x khác 2 , x khác -2
<=> \(\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\dfrac{12}{x^2-4}+\dfrac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=0\)
<=> \(\dfrac{x^2+3x+2}{....}-\dfrac{5x-10}{....}-\dfrac{12}{...}+\dfrac{x^2-4}{....}=0\)
<=> \(x^2+3x+2-5x+10-12+x^2-4=0\)
<=> \(2x^2-2x-4=0\)
<=> x =2 (ktm)
Vậy..
Biểu diễn hình học miền nghiệm của bất phương trình, hệ bất phương trình sau
1) 3x − y + 1 > 0 2) 2(x − 1) + y − 2 ≤ x − 3y + 1
Giải các phương trình và bất phương trình sau
a)\(\left|x-9\right|\) \(=2x+5\)
b) \(\dfrac{1-2x}{4}\) \(-2\) ≤ \(\dfrac{1-5x}{8}\) + x
c)\(\dfrac{2}{x-3}\)\(+\dfrac{3}{x+3}\)\(=\dfrac{3x+5}{x^2-9}\)
|x-9|=2x+5
Xét 3 TH
TH1: x>9 => x-9=2x+5 =>-9-5=x =>x=-14 (L)
TH2: x<9 => 9-x=2x+5 => 9-5=3x =>x=4/3(t/m)
TH3: x=9 =>0=23(L)
Vậy x= 4/3
Ta có:\(\dfrac{1-2x}{4}-2\le\dfrac{1-5x}{8}+x\\ \)
\(\dfrac{2-4x-16}{8}\le\dfrac{1-5x+8x}{8}\)
\(-4x-14\le1+3x\\ \Leftrightarrow7x+15\ge0\\ \Leftrightarrow x\ge-\dfrac{15}{7}\)
Ta có:
\(\dfrac{2}{x-3}+\dfrac{3}{x+3}=\dfrac{3x+5}{x^2-9}\)
\(\dfrac{2\left(x+3\right)+3\left(x-3\right)}{x^2-9}=\dfrac{3x+5}{x^2-9}\)
\(5x-4=3x+5\Leftrightarrow2x=9\Leftrightarrow x=\dfrac{9}{2}\)
Biểu diễn hình học miền nghiệm của bất phương trình, hệ bất phương trình sau
1) \(3x-y+1>0\) 2) \(2\left(x-1\right)+y-2\le x-3y+1\)
Tập nghiệm của bất phương trình \(\dfrac{\text{x}^2-1}{x^2+x+1}>0\) là:
A. \(\left(1;+\infty\right)\) B. \(\left(-\infty;1\right)\) C. \(\left(-\infty;-1\right)\cup\left(1;+\infty\right)\) D. (-1; 1)
Giải bất phương trình
1) \(\dfrac{3}{x-1}+2>0\) 2) \(\dfrac{1}{3x+1}-2\le0\)
1: \(\Leftrightarrow\dfrac{3+2x-2}{x-1}>0\)
\(\Leftrightarrow\dfrac{2x+1}{x-1}>0\)
=>x>1 hoặc x<-1/2
2: \(\Leftrightarrow\dfrac{1-6x-2}{3x+1}< =0\)
\(\Leftrightarrow\dfrac{6x+1}{3x+1}>=0\)
=>x>1/3 hoặc x<=-1/6
Giải bất phương trình sau và tìm nghiệm nhỏ nhất?
2-\(\dfrac{3\left(x+1\right)}{8}\)<3+\(\dfrac{x-1}{4}\)
\(\Leftrightarrow16-3\left(x+1\right)< 24+2\left(x-1\right)\)
=>16-3x-3<24+2x-2
=>-3x+13<2x+22
=>-5x<9
hay x>-9/5
Giải các bất phương trình sau
1) \(\dfrac{\text{x - 2}}{x+1}-\dfrac{3}{x+2}>0\) 2) \(\dfrac{\text{x + 1}}{x+2}+\dfrac{x}{x-3}\le0\)
3) \(\dfrac{\text{x}^2+2x+5}{x+4}>x-3\) 4) \(\sqrt{\text{x^2}-3x+2}\ge3\)
\(\dfrac{x-2}{x+1}-\dfrac{3}{x+2}>0.\left(x\ne-1;-2\right).\\ \Leftrightarrow\dfrac{x^2-4-3x-3}{\left(x+1\right)\left(x+2\right)}>0.\\ \Leftrightarrow\dfrac{x^2-3x-7}{\left(x+1\right)\left(x+2\right)}>0.\)
Đặt \(f\left(x\right)=\dfrac{x^2-3x-7}{\left(x+1\right)\left(x+2\right)}>0.\)
Ta có: \(x^2-3x-7=0.\Rightarrow\left[{}\begin{matrix}x=\dfrac{3+\sqrt{37}}{2}.\\x=\dfrac{3-\sqrt{37}}{2}.\end{matrix}\right.\)
\(x+1=0.\Leftrightarrow x=-1.\\ x+2=0.\Leftrightarrow x=-2.\)
Bảng xét dấu:
\(\Rightarrow f\left(x\right)>0\Leftrightarrow x\in\left(-\infty-2\right)\cup\left(\dfrac{3-\sqrt{37}}{2};-1\right)\cup\left(\dfrac{3+\sqrt{37}}{2};+\infty\right).\)
\(\sqrt{x^2-3x+2}\ge3.\\ \Leftrightarrow x^2-3x+2\ge9.\\ \Leftrightarrow x^2-3x-7\ge0.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3-\sqrt{37}}{2}.\\x=\dfrac{3+\sqrt{37}}{2}.\end{matrix}\right.\)
Đặt \(f\left(x\right)=x^2-3x-7.\)
\(f\left(x\right)=x^2-3x-7.\)
\(\Rightarrow f\left(x\right)\ge0\Leftrightarrow x\in(-\infty;\dfrac{3-\sqrt{37}}{2}]\cup[\dfrac{3+\sqrt{37}}{2};+\infty).\)
\(\Rightarrow\sqrt{x^2-3x+2}\ge3\Leftrightarrow x\in(-\infty;\dfrac{3-\sqrt{37}}{2}]\cup[\dfrac{3+\sqrt{37}}{2};+\infty).\)