Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tên thùy họ nguyễn T_T_T...
Xem chi tiết
o0o I am a studious pers...
27 tháng 6 2016 lúc 10:41

Mik quên còn t/c đường phân giác nữa 

Sorry nha

Nhưng chưa chắc đúng đâu sơ xài quá

o0o I am a studious pers...
27 tháng 6 2016 lúc 10:16

Bài này ẩu kinh 

Bạn biết phép đông dạng gồm :

  Góc - Góc

Cạnh Cạnh cạnh

Cạnh canh góc

Ở đây thứ nhất thiếu dữ liệu 

Thứ 2 thiếu hình 

Thứ 3 chơi xỏ mik 

Dương Sĩ Phú
27 tháng 6 2016 lúc 10:17

ài này ẩu kinh 

Bạn biết phép đông dạng gồm :

  Góc - Góc

Cạnh Cạnh cạnh

Cạnh canh góc

Ở đây thứ nhất thiếu dữ liệu 

Thứ 2 thiếu hình 

Thứ 3 chơi xỏ mik 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 7 2018 lúc 15:15

Giải bài tập Đại số 11 | Để học tốt Toán 11

Gọi d là đường phân giác của góc B của ΔABC.

+ Phép đối xứng qua d: biến H thành H’ ∈ AB, biến A thành A’ ∈ BC; biến B thành B

(Dễ dàng nhận thấy H’ ∈ BA; A’ ∈ BC).

⇒ ΔH’BA’ = Đd(ΔHBA).

⇒ ΔH’BA’ = ΔHBA.

Mà ΔABC Giải bài tập Đại số 11 | Để học tốt Toán 11 ΔHBA theo tỉ số Giải bài tập Đại số 11 | Để học tốt Toán 11

⇒ ΔABC Giải bài tập Đại số 11 | Để học tốt Toán 11 ΔH’BA’ theo tỉ số k

⇒ AB = k.H’B; BC = k.BA’.

Mà A ∈ tia BH’ ; C ∈ tia BA’

Giải bài tập Đại số 11 | Để học tốt Toán 11

Vậy phép đồng dạng cần tìm là phép vị tự tâm B, tỉ số Giải bài tập Đại số 11 | Để học tốt Toán 11 hợp với phép đối xứng trục d là phân giác của Giải bài tập Đại số 11 | Để học tốt Toán 11

Sách Giáo Khoa
Xem chi tiết
qwerty
31 tháng 3 2017 lúc 8:24

Gọi d là đường phân giác của . Ta có {D_{d}}^{} biến ∆HBA thành ∆A'B'C'. Dd biến ∆A'B'C' thành ∆ABC.

Do đó phép đồng dạng có được bằng cách thực hiện liên tiếp {D_{d}}^{} và Dd sẽ biến HBA thành ABC.

Trần Đăng Nhất
31 tháng 3 2017 lúc 8:44

Gọi d là đường phân giác của . Ta có {D_{d}}^{} biến ∆HBA thành ∆A'B'C'. Dd biến ∆A'B'C' thành ∆ABC.

Do đó phép đồng dạng có được bằng cách thực hiện liên tiếp {D_{d}}^{} và Dd sẽ biến HBA thành ABC.

Bùi Thị Vân
30 tháng 5 2017 lúc 15:07

A B C H A' H' d
a) Gọi Bd là tia phân giác của \(\widehat{ABC}\).
Ta có: \(Đ_d\) biến tam giác AHB thành tam tam giác A'BH'.
Phép vị tự \(V_{\left(B;\dfrac{AH}{BC}\right)}\) biến tam giác A'BH thành tam giác CBA.
Do đó phép đồng dạng có được bằng cách thực hiện liên tiếp hai phép \(Đ_d\)\(V_{\left(B;\dfrac{AH}{BC}\right)}\) sẽ biến tam giác HBA thành tam giác ABC.

Chauu Arii
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 4 2023 lúc 22:38

a: Xét ΔACI vuông tại C và ΔAHB vuông tại H có

góc CAI=góc HAB

=>ΔACI đồng dạng với ΔAHB

b: Xét ΔHBI và ΔHAB có

góc HBI=góc HAB

góc H chung

=>ΔHBI đồng dạng với ΔHAB

=>HB/HA=HI/HB

=>HB^2=HA*HI

c: CD/DA=CK/KA=CB/CA

Nguyễn Việt Lâm
8 tháng 4 2023 lúc 22:41

a.

Xét hai tam giác AIC và ABH có:

\(\left\{{}\begin{matrix}\widehat{CAI}=\widehat{BAH}\left(\text{Ax là phân giác}\right)\\\widehat{ACI}=\widehat{AHB}=90^0\left(gt\right)\end{matrix}\right.\) 

\(\Rightarrow\Delta AIC\sim\Delta ABH\left(g.g\right)\) (1)

b.

Xét hai tam giác AIC và BIH có:

\(\left\{{}\begin{matrix}\widehat{AIC}=\widehat{BIH}\left(\text{đối đỉnh}\right)\\\widehat{ACI}=\widehat{BHI}=90^0\end{matrix}\right.\)  \(\Rightarrow\Delta AIC\sim\Delta BIH\left(g.g\right)\) (2)

(1);(2) \(\Rightarrow\Delta ABH\sim\Delta BIH\)

\(\Rightarrow\dfrac{AH}{BH}=\dfrac{BH}{IH}\Rightarrow BH^2=HI.HA\)

c.

Áp dụng định lý phân giác trong tam giác ACK: \(\dfrac{CD}{DA}=\dfrac{CK}{AK}\) (3)

Xét hai tam giác ABC và ACK có:

\(\left\{{}\begin{matrix}\widehat{CAB}\text{ chung}\\\widehat{BCA}=\widehat{CKA}=90^0\left(gt\right)\end{matrix}\right.\) \(\Rightarrow\Delta ABC\sim\Delta ACK\left(g.g\right)\)

\(\Rightarrow\dfrac{BC}{CK}=\dfrac{AC}{AK}\Rightarrow\dfrac{BC}{AC}=\dfrac{CK}{AK}\) (4)

(3);(4) \(\Rightarrow\dfrac{CD}{DA}=\dfrac{BC}{AC}\)

Nguyễn Việt Lâm
8 tháng 4 2023 lúc 22:42

loading...

Thanh Vũ
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 7 2023 lúc 22:20

a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có

góc B chung

=>ΔABH đồng dạng với ΔCBA

b: Xét ΔCAM có

CK,AH là đường cao

CK cắt AH tại I

=>I là trực tâm

=>MI vuông góc AC

=>MI//AB

Xét ΔHAB có 

M là trung điểm của HB

MI//AB

=>I là trung điểm của AH

=>IA=IH

Vo Le The Bao
Xem chi tiết
Huỳnh Hữu Thắng
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 7 2023 lúc 9:48

a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có

góc B chung

=>ΔABH đồng dạng với ΔCBA

=>BA/BC=BH/BA

=>BA^2=BH*BC

b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có

góc HAB=góc HCA

=>ΔHAB đồng dạng với ΔHCA

=>HA/HC=HB/HA

=>HA^2=HB*HC

c: Xét ΔCAM có

CK,AH là đường cao

CK cắt AH tại I

=>I là trực tâm

=>MI vuông góc AC

=>MI//AB

Xét ΔHAB có

M là trung điểm của HB

MI//AB

=>I là trung điểm của HA

Võ Văn Bé Tâm
Xem chi tiết
Võ Văn Bé Tâm
26 tháng 3 2016 lúc 10:29

Mình đã giải xong câu a, b, c. Nhờ các bạn và quý thầy cô giải giúp câu d. Chỉ cần tóm tắt lời giải thôi cũng được ạ.

Hồ Sỹ Tiến
26 tháng 3 2016 lúc 17:58

d) SADE = 1/2.AD.AE ; SABC = 1/2.AB.AC => SADE / SABC = AD.AE/AB.AC =1/4 (1)

Do tg ADE đồng dạng tg ABC => SADE / SABC = (DE/BC)2 = (AH/BC)2 (2)

Từ (1) và (2) => AH/BC = 1/2 hay AH = !/2 BC. Vậy AH là đường trung tuyến tg ABC, mà AH là đường cao => tg ABC cân tại A 

nguyễn thùy trang
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 4 2022 lúc 13:41

a: Xét ΔABD vuông tại A và ΔHBI vuông tại H có

\(\widehat{ABD}=\widehat{HBI}\)

Do đó: ΔABD\(\sim\)ΔHBI

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

 

lebakhiem1122011
26 tháng 4 lúc 21:38

 

A) Ta cần chứng minh tam giác \(ABD\) đồng dạng tam giác \(HBI\). Để làm điều này, ta cần chứng minh rằng các góc của chúng là bằng nhau.
   - Góc \(ABD\) và \(HBI\) là góc vuông, vì \(AB\) và \(HB\) là đường cao của tam giác \(ABC\).
   - Góc \(ADB\) và \(HIB\) là góc phân giác của tam giác \(ABC\), do đó chúng bằng nhau.

Vậy, ta có thể kết luận tam giác \(ABD\) đồng dạng tam giác \(HBI\).

B) Để chứng minh \(AH^2 = HB \cdot HC\), ta sử dụng định lý đường cao và tính chất của đường cao trong tam giác vuông:
   - \(AH\) là đường cao của tam giác \(ABC\), nên \(AH^2 = BH \cdot HC\).

Vậy, \(AH^2 = HB \cdot HC\).

C) Để chứng minh tam giác \(IAD\) cân và \(DA^2 = DC \cdot IH\), ta sử dụng tính chất của giao điểm của đường phân giác và đường cao:
   - Góc \(IAD\) và \(IDA\) là góc phân giác của tam giác \(ABC\), do đó chúng bằng nhau.
   - \(IH\) là đường cao của tam giác \(ABC\) nên \(DA^2 = DC \cdot IH\).

Vậy, ta chứng minh được tam giác \(IAD\) cân và \(DA^2 = DC \cdot IH\).

D) Để chứng minh \(K, P, Q\) thẳng hàng, ta có thể sử dụng tính chất của điểm trung điểm và đường phân giác:
   - \(Q\) là trung điểm của \(BC\), nên \(Q\) nằm trên đường thẳng \(KP\).
   - \(K\) là giao điểm của \(AH\) và \(BD\), và \(P\) là giao điểm của \(AH\) và \(CI\), nên \(K, P, Q\) thẳng hàng theo Định lý Menelaus trên tam giác \(ACI\) và đường thẳng \(KQ\).

Vậy, ta đã chứng minh được \(K, P, Q\) thẳng hàng.