Chứng tỏ :
1+7+72+73 +.....+ 7 101
Chia hết cho 8
Bài 7. Chứng tỏ rằng:
a) A=\(1+4+4^2+4^3+...+4^{2012}\) chia hết cho 21
b) B=\(1+7+7^2+7^3+...+7^{101}\) chia hết cho 8
\(A=1+4+4^2+...+4^{2012}=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...+4^{2010}\left(1+4+4^2\right)\)
\(=21+21.4^3+...+21.4^{2010}=21\left(1+4^3+...+4^{2010}\right)⋮21\)
\(B=1+7+7^2+...+7^{101}=\left(1+7\right)+7^2\left(1+7\right)+...+7^{100}\left(1+7\right)\)
\(=8+7^2.8+...+7^{100}.8=8\left(1+7^2+...+7^{100}\right)⋮8\)
(1+7) +(7•7+7•7•7)+...+7 •7•7•7...(101 số 7)chứng tỏ dãy trên chia hết cho 8
a) (1 + 7 ) + ( 72 + 73 ) + .... + (7100 + 7101) chia hết cho 8
Gọi A = ( 1 + 7 ) + ( 72 + 73 ) + ..... + ( 7100 + 7101 )
A = ( 70 + 71 ) + ( 72 + 73 ) + ..... + ( 7100 + 7101 )
A = 70 ( 1 + 7 ) + 72 + ( 1 + 7 ) + ...... + 7100 ( 1 + 7 )
A = 70 x 8 + 72 x 8 + ..... + 7100 x 8
A = 8 x ( 70 + 72 + .... + 7100 ) chia hết cho 8 vì có một thừa số chia hết cho 8 ( 8 chia hết cho 8 )
a) ( 1 + 7 ) + ( 72 + 73 ) + ... + ( 7100 + 7101 ) Chia hết cho 8
Gọi A = ( 1 + 7 ) + ( 72 + 73 ) + ... + ( 7100 + 7101 )
A = ( 70 + 71 ) + ( 72 + 73 ) + ... + ( 7100 + 7101 )
A = 70 ( 1 + 7 ) + 72 ( 1 + 7 ) + ... + 7100 ( 1+ 7 )
A = 70 x 8 + 72 x 8 + ... + 7100 x 8
A = 8 x ( 70 + 72 + ... + 7100 ) chia hết cho 8 vì có một thừa số chia hết cho 8 ( 8 chia hết cho 8 )
=> A chia hết cho 8
Chứng tỏ rằng:
1+7+72+......+7101 chia hết cho 8
hơi qá r` đấy !
1 + 7 + 72 + ........... + 7101
= ( 1 + 7 ) + ( 72 + 73 ) + ............. + ( 7100 + 7101 )
= 8 + 72( 1 + 7 ) + ............. + 7100( 1 + 7 )
= 8 + 72 . 8 + ........... + 7100 . 8
= 8( 1 + 72 + ............. + 7100 ) chia hết cho 8
Chứng tỏ rằng : 1+7+72+73+...+7101 chia hết cho 8
TA CÓ : (1+7)+(7^2+7^3)+......+(7^100+7^101)
=> 8+(7(1+7))+.....+(7^100(1+7)
=> 8+7.8 +7^2.8+....+7^100.8
=> 8(1+7+7^2+.....+7^100)
MÀ 8 CHIA HẾT CHO 8 VẬY 1+7+7^2+...+7^101 CHIA HẾT CHO 8
Bạn Nguyễn Văn Vinh làm đúng wa ^_^
Chứng tỏ :
a) 5^2017+5^2016+5^2015 chia hết cho 31
b) 1+7+7^2+7^3+...+7^101 chia hết cho 8
a )
Ta có :
\(5^{2017}+5^{2016}+5^{2015}\)
\(=5^{2015}\left(5^2+5+1\right)\)
\(=5^{2015}.31⋮31\left(đpcm\right)\)
b )
Số lượng số dãy số trên là :
\(\left(101-0\right):1+1=102\)( số )
Do \(102⋮2\)nên ta nhóm 2 số liền nhau thành 1 nhóm như sau :
\(\left(1+7\right)+\left(7^2+7^3\right)+...+\left(7^{100}+7^{101}\right)\)
\(=8+7^2\left(1+7\right)+...+7^{100}\left(1+7\right)\)
\(=8+7^2.8+...+7^{100}.8\)
\(=8\left(1+7^2+...+7^{100}\right)⋮8\left(đpcm\right)\)
Chứng tỏ A=70+71+72+73+.....+72020+72021 chia hết cho 8
\(A=\left(1+7\right)+...+7^{2020}\left(1+7\right)=8\left(1+...+7^{2020}\right)⋮8\)
\(A = (1 + 7) +...+7^2\)\(^0\)\(^2\)\(^0\) \((1 + 7) = 8 (1+...+7^2\)\(^0\)\(^2\)\(^0\)\() \) ⋮\(8\)
Chứng tỏ 1 + 7+ 72 + 73 + ... + 7101 chia hết cho 8
\(1+7+7^2+...+7^{101}\)
Nhóm các cặp số lại với nhau :
\(\left(1+7\right)+\left(7^2+7^3\right)+...+\left(7^{100}+7^{101}\right)=8+7^2\left(1+7\right)+7^4\left(1+7\right)+...+7^{100}\left(1+7\right)\)
\(\Leftrightarrow8\cdot\left(1+7^2+7^4+...+7^{100}\right)⋮8\)
D=(1+7)+72=(1+7)+......+7100(1+7)
D=8+72.8+.........+7100.8
D=8(1+72+...+7100) chia hết cho 8
Vậy D chia hết cho 8
\(1+7+7^2+7^3+...+7^{101}\)
\(=\left(1+7\right)+\left(7^2+7^3\right)+...+\left(7^{100}-7^{101}\right)\)
\(=8+7^2\left(1+7\right)+...+7^{100}\left(1+7\right)\)
\(=8+7^2\cdot8+...+7^{100}\cdot8\)
\(=8\left(1+7^2+...+7^{100}\right)⋮8\)
\(\Rightarrow1+7+7^2+7^3+....+7^{101}⋮8\left(đpcm\right)\)
Chứng tỏ rằng \(1+7+7^2+...+7^{101}\)chia hết cho 8
Giúp mình với!!!
Đặt A=1+7+72+...+7101
=(1+7)+(72+73)+...+(7100+7101)
=8+72(1+7)+...+7100(1+7)
=8+72.8+...+7100.8
=8(1+72+...+7100)
\(\Rightarrow A⋮8\)
Vậy A\(⋮\)8
Ta có : A = ( 1 + 7 ) + ( 7^2 +7^3 ) + .... + ( 7^100 + 7^101 )
= 1( 1 + 7 ) + 7^2( 1+7 ) +.....+ 7^100( 1 + 7 )
= 1. 8 + 7^2 . 8 +....+ 7^100 . 8
= 8( 1+7^2+....+7^100 )
=> A chia hết cho 8
chứng tỏ rằng
1] 1+ 4+4^2+4^3+...+4^2012 chia hết cho 21
2] 1+7+7^2+7^3+...7^101 chia hết cho 8
3] 2+2^2+2^3+...+2^100 chia hết cho 31 và 5
1) \(1+4+4^2+4^3+...+4^{2012}\)
\(=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{2010}+4^{2011}+4^{2012}\right)\)
\(=21+21\cdot4^3+...+21\cdot4^{2010}\)
\(=21\cdot\left(1+4^3+...+4^{2010}\right)\) chia hết cho 21
2) \(1+7+7^2+7^3+...+7^{101}\)
\(=\left(1+7\right)+\left(7^2+7^3\right)+...+\left(7^{100}+7^{101}\right)\)
\(=8+8\cdot7^2+...8\cdot7^{100}\)
\(=8\cdot\left(1+7^2+...+7^{100}\right)\) chia hết cho 8
3) CM chia hết cho 5:
\(2+2^2+2^3+2^4+...+2^{100}\)
\(=\left(2+2^3\right)+\left(2^2+2^4\right)+...+\left(2^{98}+2^{100}\right)\)
\(=5\cdot2+5\cdot2^2+...+5\cdot2^{98}\)
\(=5\cdot\left(2+2^2+...+2^{98}\right)\) chia hết cho 5
CM chia hết cho 31:
\(2+2^2+2^3+...+2^{100}\)
\(=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=2\cdot31+...+2^{96}\cdot31\)
\(=31\cdot\left(2+...+2^{96}\right)\) chia hết cho 31