Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngọc Minh
Xem chi tiết
Pham Van Hung
9 tháng 9 2018 lúc 7:31

    \(\frac{x}{y^3-1}-\frac{y}{x^3-1}\)

\(=\frac{1-y}{\left(y-1\right)\left(y^2+y+1\right)}-\frac{1-x}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\frac{-1}{y^2+y+1}+\frac{1}{x^2+x+1}\)

\(=\frac{-x^2-x-1+y^2+y+1}{\left(x^2+x+1\right)\left(y^2+y+1\right)}\)

\(=\frac{\left(y^2-x^2\right)+y-x}{x^2y^2+x^2y+x^2+xy^2+xy+x+y^2+y+1}\)

\(=\frac{\left(y-x\right)\left(y+x\right)+y-x}{x^2y^2+x^2y+xy^2+x^2+xy+y^2+x+y+1}\)

\(=\frac{y-x+y-x}{x^2y^2+xy\left(x+y\right)+x\left(x+y\right)+y^2+x+y+1}\)

\(=\frac{2\left(y-x\right)}{x^2y^2+xy+x+y^2+x+y+1}\)

\(=\frac{2\left(y-x\right)}{x^2y^2+x\left(y+1\right)+y^2+x+y+1}\)

\(=\frac{2\left(y-x\right)}{x^2y^2+\left(1-y\right)\left(y+1\right)+y^2+\left(x+y\right)+1}\)

\(=\frac{2\left(y-x\right)}{x^2y^2+1-y^2+y^2+1+1}\)

\(=\frac{2\left(y-x\right)}{x^2y^2+3}\)

Lý Bảo Thy
Xem chi tiết
lê khánh hòa
Xem chi tiết
Oo Bản tình ca ác quỷ oO
30 tháng 8 2016 lúc 20:41

thực sự mk rất mún giúp bn nhưng mk chưa hok tới!! xin lỗi

45646565557657767876876876565657676768876334455454655454

Linh_Chi_chimte
27 tháng 12 2017 lúc 19:55

mình giải đc phần a) thôi:

x+y=xy
<=> x+y-xy=0
<=> x(1-y)-(1-y)+1=0
<=> (1-y)(x-1)=-1
do đó: 1-y=1;x-1=-1

 hoặc 1-y=-1; x-1=1
+) 1-y=1 => y=0

x-1=-1=> x=0

+) 1-y=-1 => y=2

x-1=1 => x=2

=> cặp x,y cần tìm là (0;0) và (2;2)

Văn Thị Quỳnh Anh
Xem chi tiết
Hoàng Lê Bảo Ngọc
18 tháng 11 2016 lúc 16:33

Mình viết gọn thôi nhé , tại nhiều câu quá ^^

a/ \(\left(x+1\right)\left(1-y\right)=2\)

b/ \(\left(x+2\right)\left(y-1\right)=13\)

c/ \(\left(x-2\right)\left(y+3\right)=1\)

d/ \(\left(x-1\right)\left(y-1\right)=3\)

e/ \(\left(2x-y\right)\left(x+2y\right)=7\)

Về cách tìm nghiệm nguyên chắc bạn biết rồi nên mình không viết rõ ra nhé ^^

Trần Đặng Xuân Quyên
Xem chi tiết
Nước Nam Người
Xem chi tiết
Ran Kudo
Xem chi tiết
lê thị hương giang
2 tháng 7 2019 lúc 16:20

\(x-4y+4y^2-xy\)

\(=\left(x-xy\right)-\left(4y-4y^2\right)\)

\(=x\left(1-y\right)-4y\left(1-y\right)\)

\(=\left(1-y\right)\left(x-4y\right)\)

\(x^2-1-y^2-2y\)

\(=x^2-\left(y^2+2y+1\right)\)

\(=x^2-\left(y+1\right)^2=\left(x-y-1\right)\left(x+y+1\right)\)

\(2+2x-xy-y^2\) ( kiểm tra đề nha bn)

\(\left(x+1\right)^2-x-1=\left(x+1\right)^2-\left(x+1\right)=\left(x+1\right)\left(x+1-1\right)=x\left(x+1\right)\)

\(x^2+2y-1-2x+1-y^2\)

\(=\left(x^2-2x+1\right)-\left(y^2-2y+1\right)\)

\(=\left(x-1\right)^2-\left(y-1\right)^2=\left(x-1-y+1\right)\left(x-1+y-1\right)=\left(x-y\right)\left(x+y-2\right)\)

Thụy Lâm
18 tháng 6 2019 lúc 11:49

Với Kho Đề đã được cập nhật, hiện tại Đáp Án Chi Tiết môn TOÁN Kỳ thi THPT quốc gia đã có trên Ứng Dụng. Các bạn tha hồ kiểm tra đối chiếu với bài làm của mình rồi nhé Tải ngay App về để xem đáp án chi tiết nào: https://giaingay.com.vn/downapp.html

Thụy Lâm
18 tháng 6 2019 lúc 11:49

Ứng dụng giải toán đã được review rất hay bởi trang báo uy tín https://www.facebook.com/docbaoonlinethayban/videos/467035000526358/?v=467035000526358 Cả nhà tải ngay bằng link dưới đây nhé. https://giaingay.com.vn/downapp.html

Nguyễn Nhật Minh
Xem chi tiết
Mr Lazy
15 tháng 12 2015 lúc 19:15

\(\left(x;2y;3z\right)\rightarrow\left(a;b;c\right)\Rightarrow a+b+c=3.\)

\(P=\sum\frac{a}{1+b^2}=\sum\frac{a\left(1+b^2\right)-ab^2}{1+b^2}=\sum\left(a-\frac{ab^2}{1+b^2}\right)\ge\sum\left(a-\frac{ab^2}{2b}\right)=\sum\left(a-\frac{ab}{2}\right)\)

\(\ge3-\frac{1}{2.3}\left(a+b+c\right)^2=\frac{3}{2}\)

phan thị minh anh
Xem chi tiết
Kelly
29 tháng 10 2016 lúc 21:31

Ta có

\(\frac{x^2+4y^2}{x-2y}=\frac{x^2+4y^2-4xy+4xy}{x-2y}=\frac{\left(x-2y\right)^2}{x-2y}+\frac{4}{x-2y}\)

\(=x-2y+\frac{4}{x-2y}\)

Áp dụng bđt Cauchy cho hai số không âm, ta có

\(x-2y+\frac{4}{x-2y}\ge2\sqrt{\left(x-2y\right)\times\frac{4}{x-2y}}=2\sqrt{4}=4\)

Suy ra Pmin = 4

Dấu bằng xảy ra khi và chỉ khi \(x-2y=\frac{4}{x-2y}\Leftrightarrow\left(x-2y\right)^2=4\Leftrightarrow x-2y=2\)

( do x - 2y \(\ge0\) )