x ^ 4 + 5x ^ 3-x ^ 2-16x + 10 = 0
Bài 2 :Tim x biết 1)16x^2 - 9(x + 1)^2 = 0 2) (5x - 4)^2 - 49x^2 = 0 3) 5x^3 - 20x = 0
a, \(16x^2-9\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(4x\right)^2-\left(3x+3\right)^2=0\Leftrightarrow\left(4x-3x-3\right)\left(4x+2x+3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(6x+3\right)=0\Leftrightarrow x=-\frac{1}{2};x=3\)
b, \(\left(5x-4\right)^2-49x^2=0\Leftrightarrow\left(5x-4-7x\right)\left(5x-4+7x\right)=0\)
\(\Leftrightarrow\left(-2x-4\right)\left(12x-4\right)=0\Leftrightarrow x=-2;x=\frac{1}{3}\)
c, \(5x^3-20x=0\Leftrightarrow5x\left(x^2-4\right)=0\)
\(\Leftrightarrow5x\left(x-2\right)\left(x+2\right)=0\Leftrightarrow x=0;x=\pm2\)
Bài 2 :Tim x biết 1)16x^2 - 9(x + 1)^2 = 0 2) (5x - 4)^2 - 49x^2 = 0 3) 5x^3 - 20x = 0
1: Ta có: \(16x^2-9\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(4x-3x-3\right)\left(4x+3x+3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(7x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{7}{3}\end{matrix}\right.\)
2: Ta có: \(\left(5x-4\right)^2-49x^2=0\)
\(\Leftrightarrow\left(5x-4-7x\right)\left(5x-4+7x\right)=0\)
\(\Leftrightarrow\left(2x+4\right)\left(12x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{3}\end{matrix}\right.\)
3: Ta có: \(5x^3-20x=0\)
\(\Leftrightarrow5x\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
TÌM X
a)4x^4-16x^2=0
b)3x^3-1/9=0
c)x^2(x-3)=25x-75
d)x^2= -5x-6
e)x^4-5x^2+4=o
X^5+5X^4+2X^3+16X^2+10X+20=0
Ai rảnh giúp vs
a)x^2-5x+2x-10
b)x^2-7x-2x+14
c)x^3+8+5xy+10y
d)x^4+64+16x^2-16x^2
a) x(x-5)+2(x-5) = (x-5)(x+2)
b) (x-7)(x-2)
c) (x+2)(x^2+2x+4)+5y(x+2) = (x+2)(x^2+2x+4+5y)
d) (x^2+8)^2 -16x^2 = (x^2+8-4x)(x^2+8+4x)
C) 5x-(4-2x+x^2)(x+2)+x (x-1)(x+1)=0
D) (4x+1)(16x^2-4x+1)-16x (4x^2-5)=17
giải
5x-(4-2x+x^2)(x+2)+x(x-1)(x+1)=0
5x-(4x+8-2x^2-4x+x^3+2x^2)+x(x^2-1)=0
5x-4x-8+2x^2+4x-x^3-2x^2+x^3-1x=0
(5x-4x+4x-1x)+(-8)+(2x^2-2x^2)+(-x^3+x^3)=0
4x+(-8)=0
4x=0+8
4x=8
x=8:4
x=2
D)(4x+1)(16x^2-4x+1)-16x(4x^2-5)=17
64x^3-16x^2+4x+16x^2-4x+1-64x^3+80x=17
80x+1=17
80x=17-1
80x=16
x=1/5
\(5x-\left(4-2x+x^2\right)\left(x+2\right)+x\left(x-1\right)\left(x+1\right)=0\)
\(\Rightarrow5x-\left(4x-2x^2+x^3+8-4x+2x^2\right)+\left(x^2-x\right)\left(x+1\right)=0\)
\(\Rightarrow5x-\left(4x-2x^2+x^3+8-4x+2x^2\right)+\left(x^3+x-x^2-x\right)=0\)
\(\Rightarrow5x-4x+2x^2-x^3-8+4x-2x^2+x^3+x-x^2-x=0\)
\(\Rightarrow4x-8=0\Rightarrow4x=8\Rightarrow x=2\)
Giải phương trình:
1, (x^2 - 10)^2 = 16x + 1
2, x^4 = 5x^2 + 8x + 12
3, (x + 3)(x + 4)(x + 5) = x
bài 2. tính giá trị biểu thức sau
16x^2-y^2 tại x=87 và y=13
bài 3 rút gọn các biểu thức sau
a) (x-y)^3+(y+x)^3+(y-x)^3-3xy.(x+y)
b) (5x-1)^2+2.(1-5x).(4+5x)+(5x+4)^2
bài 4 tìm x biết
a)9x^2+x=0
b)27x^3+x=0
Bài 2: Tính giá trị của biểu thức sau:
\(16x^2-y^2=\left(4x+y\right)\left(4x-y\right)\)
Thay \(\hept{\begin{cases}x=87\\y=13\end{cases}}\)
\(\Rightarrow\left(4.87+13\right)\left(4.87-13\right)=361.335=120935\)
Bài 4: Tìm x
a) \(9x^2+x=0\)
\(\Rightarrow x\left(9x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\9x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{-1}{9}\end{cases}}\)
b) \(27x^3+x=0\)
\(\Rightarrow x\left(27x^2+1=0\right)\)
\(\Rightarrow\orbr{\begin{cases}x=0\\27x^2+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\27x^2=\left(-1\right)\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x^2=\frac{-1}{27}\end{cases}}\)
Ta có: \(\frac{-1}{27}\) loại vì \(x^2\ge0\forall x\)
Vậy \(x=0\)