Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
cao minh quân

Những câu hỏi liên quan
Yến Sún
Xem chi tiết
loveyoongi03
Xem chi tiết
Dương Võ
Xem chi tiết
Nguyễn Đắc Nhật
1 tháng 12 2017 lúc 21:06

2.a)n^5+1⋮n^3+1

⇒n^2.(n^3+1)-n^2+1⋮n^3+1

⇒1⋮n^3+1

⇒n^3+1ϵƯ(1)={1}

ta có :n^3+1=1

n^3=0

n=0

Vậy n=0

b)n^5+1⋮n^3+1

Vẫn làm y như bài trên nhưng vì nϵZ⇒n=0

Bữa sau giải bài 3 mình buồn ngủ quá!!!!!!!!

Dương Võ
Xem chi tiết
Nguyễn Minh Trường
Xem chi tiết
Diệu Linh Trần Thị
Xem chi tiết
nguyen phuong thao
15 tháng 12 2016 lúc 12:58

làm câu

Trâm Nguyễn
Xem chi tiết
Akai Haruma
28 tháng 12 2023 lúc 10:02

Câu c/

$6n+2\vdots 2n-1$

$3(2n-1)+5\vdots 2n-1$

$\Rightarrow 5\vdots 2n-1$

$\Rightarrow 2n-1\in Ư(5)$

$\Rightarrow 2n-1\in \left\{1; -1; 5; -5\right\}$

$\Rightarrow n\in \left\{1; 0; 3; -2\right\}$

Akai Haruma
28 tháng 12 2023 lúc 9:59

Câu a/

$2n-3\vdots n+1$

$2(n+1)-5\vdots n+1$

$5\vdots n+1$

$\Rightarrow n+1\in Ư(5)$

$\Rightarrow n+1\in \left\{1; -1; 5; -5\right\}$

$\Rightarrow n\in \left\{0; -2; 4; -6\right\}$

Akai Haruma
28 tháng 12 2023 lúc 10:00

Câu b/

$n+2\vdots 2n-3$

$\Rightarrow 2(n+2)\vdots 2n-3$

$\Rightarrow 2n-3+7\vdots 2n-3$

$\Rightarrow 7\vdots 2n-3$
$\Rightarrow 2n-3\in Ư(7)$

$\Rightarrow 2n-3\in \left\{1; -1; 7; -7\right\}$

$\Rightarrow n\in \left\{2; 1; 5; -2\right\}$

Ngoc Chau
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 4 2020 lúc 12:35

a/ \(=\lim\limits\frac{1-\frac{1}{n}}{2+\frac{7}{n}}=\frac{1-0}{2+0}=\frac{1}{2}\)

b/ \(=lim\frac{4-\frac{1}{n}+\frac{1}{n^2}}{6+\frac{1}{n^2}}=\frac{4-0+0}{6+0}=\frac{4}{6}=\frac{2}{3}\)

c/ \(=lim\frac{3-\frac{1}{n}}{\frac{1}{n^2}-1}=\frac{3-0}{0-1}=\frac{3}{-1}=-3\)

d/ \(=lim\frac{\frac{8}{n}+\frac{1}{n^2}}{1-\frac{2}{n}+\frac{19}{n^2}}=\frac{0+0}{1-0+0}=\frac{0}{1}=0\)

e/ \(=lim\frac{\sqrt{9-\frac{4}{n^2}}+2}{2+\frac{7}{n}}=\frac{\sqrt{9}+2}{2+0}=\frac{5}{2}\)

Tâm Nguyễn
Xem chi tiết
Akai Haruma
10 tháng 8 2021 lúc 17:22

Bài 1:

$A=(n-1)(2n-3)-2n(n-3)-4n$

$=2n^2-5n+3-(2n^2-6n)-4n$

$=-3n+3=3(1-n)$ chia hết cho $3$ với mọi số nguyên $n$

Ta có đpcm.

Akai Haruma
10 tháng 8 2021 lúc 17:25

Bài 2:
$B=(n+2)(2n-3)+n(2n-3)+n(n+10)$

$=(2n-3)(n+2+n)+n(n+10)$

$=(2n-3)(2n+2)+n(n+10)=4n^2-2n-6+n^2+10n$

$=5n^2+8n-6=5n(n+3)-7(n+3)+15$

$=(n+3)(5n-7)+15$

Để $B\vdots n+3$ thì $(n+3)(5n-7)+15\vdots n+3$

$\Leftrightarrow 15\vdots n+3$
$\Leftrightarrow n+3\in\left\{\pm 1;\pm 3;\pm 5;\pm 15\right\}$

$\Rightarrow n\in\left\{-2;-4;0;-6;-8; 2;12;-18\right\}$

Nguyễn Thị Bảo Trâm
Xem chi tiết