Tìm x , biết:
\(4^x+4^{x+3}=4160\)
Tìm x , biết :
4x + 4x + 3 = 4160
\(4^x+4^{x+3}=4160\)
\(4^x\times\left(1+4^3\right)=4160\)
\(4^x\times\left(1+64\right)=4160\)
\(4^x\times65=4160\)
\(4^x=\frac{4160}{65}\)
\(4^x=64\)
\(4^x=4^3\)
\(x=3\)
\(4^x+4^{x+3}=4160\)
\(\Rightarrow4^x+4^x.4^3=4160\)
\(\Rightarrow4^x.\left(1+4^3\right)=4160\)
\(\Rightarrow4^x.65=4160\)
\(\Rightarrow4^x=64\)
\(\Rightarrow4^x=4^3\)
\(\Rightarrow x=3\)
Vậy \(x=3\)
Tìm x :
\(4^x+4^{x+3}=4160\)
4x+4x+3=4160
=>4x+4x.43=4160
=>4x(1+64)=4160
=>65.4x=4160
=>4x=64
=>x=3
Vậy x=3
\(4^x+4^{x+3}=4160\)
\(\Rightarrow4^x+4^x.4^3=4160\)
\(\Rightarrow4^x.\left(1+4^3\right)=4160\)
\(\Rightarrow4^x.65=4160\)
\(\Rightarrow4^x=64\)
\(\Rightarrow x=3\)
\(4^x+4^x.4^3=4160\)
\(\Leftrightarrow4^x\left(1+64\right)=4160\)
\(\Leftrightarrow4^x=4160:65\)
\(\Leftrightarrow4^x=64=4^3\)
\(\Leftrightarrow x=3\)
tìm số tự nhiên n biết:
a) 4x+4x+3=4160
b) 2x+1+5.xx-2=7/32
4 x+3 +4x =4160
Tìm x
\(4^{x+3}+4^x=4160\)
\(\Rightarrow4^x.4^3+4^x=4160\)
\(\Rightarrow4^x.\left(4^3+1\right)=4160\)
\(\Rightarrow4^x.65=4160\)
\(\Rightarrow4^x=4160:65\)
\(\Rightarrow4^x=64\)
\(\Rightarrow4^x=4^3\)
\(\Rightarrow x=3\)
\(4^{x+3}+4^x=4160\)
\(\left(4^x\cdot4^3\right)+4^x=4160\)
\(4^x\cdot\left(4^3+1\right)=4160\)
\(4^x\cdot\left(64+1\right)=4160\)
\(4^x\cdot65=4160\)
\(4^x=4160:65\)
\(4^x=64\)
\(\Rightarrow4^x=4^3\)
\(\Rightarrow x=3\)
Thưa toàn thể quý vị, chào mừng các bạn đến đây
\(4^{x+3}+4^x=4160\)
\(4^x\left(4^3+1\right)=4160\)
\(4^x.65=4160\)
\(4^x=4160:65\)
\(4^x=64\)
=> x = 3
tìm x,biết:
a) \(4^x+4^{x+3}=4160\)
b)\(2^{x-1}+5.2^{x-2}=\frac{7}{32}\)
b)\(2^{x-1}+5\cdot2^{x-2}=\frac{7}{32}\)
\(2^x:2+5\cdot2^x:2^2=\frac{7}{32}\)
\(2^x:2+2^x:\frac{4}{5}=\frac{7}{32}\)
\(2^x\cdot\left(\frac{1}{2}+\frac{5}{4}\right)=\frac{7}{32}\)
\(2^x\cdot\frac{7}{4}=\frac{7}{32}\)
\(2^x=\frac{7}{32}:\frac{7}{4}=\frac{1}{8}\)
\(2^x=\frac{2^0}{2^3}=2^{-3}\)
\(\Rightarrow x=-3\)
a) \(4^x+4^{x+3}=4160\)
\(\Rightarrow4^x+4^x.4^3=4160\)
\(\Rightarrow4^x.\left(1+4^3\right)=4160\)
\(\Rightarrow4^x.65=4160\)
\(\Rightarrow4^x=64\)
\(\Rightarrow4^x=4^4\)
\(\Rightarrow x=4\)
Vậy \(x=4\)
b) \(2^{x-1}+5.2^{x-2}=\frac{7}{32}\)
\(\Rightarrow2^x.\frac{1}{2}+5.2^x.\frac{1}{4}=\frac{7}{32}\)
\(\Rightarrow2^x.\left(\frac{1}{2}+5.\frac{1}{4}\right)=\frac{7}{32}\)
\(\Rightarrow2^x.\frac{7}{4}=\frac{7}{32}\)
\(\Rightarrow2^x=\frac{7}{32}:\frac{7}{4}\)
\(\Rightarrow2^x=\frac{1}{8}\)
\(\Rightarrow2^x=2^{-3}\)
\(\Rightarrow x=-3\)
Vậy \(x=-3\)
a)\(4^x+4^{x+3}=4160\)
\(4^x+4^x\cdot4^3=4160\)
\(4^x\left(1+4^3\right)=4160\)
\(4^x\cdot65=4160\)
\(4^x=4160:65=64\)
\(4^x=4^3\)
\(\Rightarrow x=3\)
Tìm x:\(4^x\)+ \(4^{x+3}\)= 4160
=> 4x[1 + 43] = 4160
=> 4x . 65 = 4160
=> 4x = 64
=> x = 3
Ta có: 4\(^x\)+4\(^{x+3}\)=4160
\(\Rightarrow\)4\(^x\).(1+4\(^3\))=4160
\(\Rightarrow\)4\(^x\).65=4160
\(\Rightarrow\)4\(^x\)=64
\(\Rightarrow\)4\(^x\)=4\(^3\)\(\Rightarrow\)x=3
4\(^x\)+4\(^x\).64=4160
4\(^x\)(1+64)= 4160
4\(^x\)=4160:65=64
4\(^x\)=4\(^3\)
\(\Rightarrow\)x=3
tìm x, biết4 mu x + 4 mux+3 = 4160
\(4^x+4^{x+3}=4160\)
\(\Leftrightarrow4^x.\left(1+4^3\right)=4160\)
\(\Leftrightarrow4^x.65=4160\)
\(\Leftrightarrow4^x=4160:65=64\)
\(\Rightarrow x=3\)
Tìm x c z:
4x + 4x+3 = 4160
ta có :
4160 chia liên tục cho 4 được 9 lần
mà 9 - 3 = 6 . vậy 2 lần x = 6
x = 6 : 2 = 3
nhé !
dễ
Bạn tự suy nghĩ cách làm nhé !
\(4^x+4^{x+3}=4160\)
\(x=3\)
Tìm x thuộc N:
a) 4^x+a^x+3 = 4160
b) 2^x-1+5.2^x-2 = 7/32