giải bất phương trình: 2x^2-5x+4<0
Giải bất phương trình sau : a/ 2x ^ 2 + 6x - 8 < 0 x ^ 2 + 5x + 4 >=\ 2) Giải phương trình sau : a/ sqrt(2x ^ 2 - 4x - 2) = sqrt(x ^ 2 - x - 2) c/ sqrt(2x ^ 2 - 4x + 2) = sqrt(x ^ 2 - x - 3) b/ x ^ 2 + 5x + 4 < 0 d/ 2x ^ 2 + 6x - 8 > 0 b/ sqrt(- x ^ 2 - 5x + 2) = sqrt(x ^ 2 - 2x - 3) d/ sqrt(- x ^ 2 + 6x - 4) = sqrt(x ^ 2 - 2x - 7)
2:
a: =>2x^2-4x-2=x^2-x-2
=>x^2-3x=0
=>x=0(loại) hoặc x=3
b: =>(x+1)(x+4)<0
=>-4<x<-1
d: =>x^2-2x-7=-x^2+6x-4
=>2x^2-8x-3=0
=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)
Câu 1 Giải bất phương trình sau, biểu diễn tập nghiệm trên trục số
2x+4 > 5x -11
Câu 2 Giải phương trình
|x+10|=5x-2
2x + 4 > 5x - 11
<=> 2x - 5x > -11 - 4
<=> -3x > -15
<=> -3x : ( -3 ) < -15 : ( -3 )
<=> x < 5
Vậy tập nghiệm của bất phương trình là x < 5
Giải bất phương trình A) căn 5x-1< x+1 B) căn x^2 +2x+8 b< x+2 C) căn 2x^2 +4
Giải bất phương trình:
\(2x^2-5x+4< 0\)
2x2-5x+4<0
=>2( x2-\(\frac{5}{2}\).x +2)<0
=> 2(x2-\(\frac{5}{2}\).x+\(\frac{25}{16}\))+\(\frac{7}{8}\)<0
=>2(x-\(\frac{5}{4}\))2+\(\frac{7}{8}\)<0 (vô lí)
Vậy bất phương trình trên vô nghiệm
Có: \(\Delta=\left(-5\right)^2-4.2.4=-7< 0\)
mà 2 > 0
=> pt trên luôn luôn dương với mọi x thuộc R
mà đề cho: 2x2 - 5x + 4 < 0 (vô lí)
Vậy x thuộc rỗng
Giải bất phương trình:
a ) ( x + 1 ) ( 2 x – 2 ) – 3 > – 5 x – ( 2 x + 1 ) ( 3 – x ) ( 1 ) b ) x – 3 2 + 4 ( 2 – x ) > x ( x + 7 ) ( 2 )
a) (x + 1)(2x – 2) – 3 > –5x – (2x + 1)(3 – x)
⇔ 2x2 – 2x + 2x – 2 – 3 > –5x – (6x – 2x2 + 3 – x)
⇔ 2x2 – 5 ≥ –5x – 6x + 2x2 – 3 + x
⇔ 10x ≥ 2 ⇔ x ≥ 1/5
Tập nghiệm: S = {x | x ≥ 1/5}
b) (x – 3)2 + 4(2 – x) > x(x + 7)
⇔ x2 – 6x + 9 + 8 – 4x > x2 + 7x
⇔ –17x > –17
⇔ x < -17/-17
⇔ x < 1
Tập nghiệm: S = {x | x < 1}.
giải các bất phương trình tích và các bất phương trình thương
b/ \(\dfrac{3x+5}{2x^2-5x+3}\)≥0
c/2x3+x+3>0
Lời giải:
b/
\(\frac{3x+5}{2x^2-5x+3}\geq 0\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} 3x+5\geq 0\\ 2x^2-5x+3>0\end{matrix}\right.\\ \left\{\begin{matrix} 3x+5\leq 0\\ 2x^2-5x+3<0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} x\geq \frac{-5}{3}\\ x>\frac{3}{2}(\text{hoặc}) x< 1\end{matrix}\right.\\ \left\{\begin{matrix} x\leq \frac{-5}{3}\\ 1< x< \frac{3}{2}\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow \left[\begin{matrix} x>\frac{3}{2}\\ \frac{-5}{3}\leq x< 1\end{matrix}\right.\ \)
c/
$2x^3+x+3>0$
$\Leftrightarrow 2x^2(x+1)-2x(x+1)+3(x+1)>0$
$\Leftrightarrow (x+1)(2x^2-2x+3)>0$
$\Leftrightarrow (x+1)[x^2+(x-1)^2+2]>0$
$\Leftrightarrow x+1>0$
$\Leftrightarrow x>-1$
Giải phương trình và bất phương trình sau:
a ) | 3 x | = x + 6 b ) x + 2 x - 2 - 1 x = 2 x x - 2 c ) ( x + 1 ) ( 2 x – 2 ) – 3 > – 5 x – ( 2 x + 1 ) ( 3 – x )
a) |3x| = x + 6 (1)
Ta có 3x = 3x khi x ≥ 0 và 3x = -3x khi x < 0
Vậy để giải phương trình (1) ta quy về giải hai phương trình sau:
+ ) Phương trình 3x = x + 6 với điều kiện x ≥ 0
Ta có: 3x = x + 6 ⇔ 2x = 6 ⇔ x = 3 (TMĐK)
Do đó x = 3 là nghiệm của phương trình (1).
+ ) Phương trình -3x = x + 6 với điều kiện x < 0
Ta có -3x = x + 6 ⇔ -4x + 6 ⇔ x = -3/2 (TMĐK)
Do đó x = -3/2 là nghiệm của phương trình (1).
Vậy tập nghiệm của phương trình đã cho S = {3; -3/2}
ĐKXĐ: x ≠ 0, x ≠ 2
Quy đồng mẫu hai vễ của phương trình, ta được:
Vậy tập nghiệm của phương trình là S = {-1}
c) (x + 1)(2x – 2) – 3 > –5x – (2x + 1)(3 – x)
⇔ 2x2 – 2x + 2x – 2 – 3 > –5x – (6x – 2x2 + 3 – x)
⇔ 2x2 – 5 ≥ –5x – 6x + 2x2 – 3 + x
⇔ 10x ≥ 2 ⇔ x ≥ 1/5
Tập nghiệm: S = {x | x ≥ 1/5}
Giải bất phương trình sau và biểu diễn tập nghiệm trên trục số:
\(\dfrac{1-2x}{4}-2< \dfrac{1-5x}{8}\)
\(\dfrac{1-2x}{4}-2< \dfrac{1-5x}{8}\)
\(\Leftrightarrow\dfrac{2\left(1-2x\right)-16}{8}< \dfrac{1-5x}{8}\)
\(\Leftrightarrow2\left(1-2x\right)-16< 1-5x\)
\(\Leftrightarrow2-4x-16< 1-5x\)
\(\Leftrightarrow x< 15\)
Vậy \(S=\left\{x|x< 15\right\}\)