Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phương Nguyễn 2k7
Xem chi tiết
Tien Le Quoc
Xem chi tiết
Luu hoang minh
Xem chi tiết
vũ minh
Xem chi tiết
Duy Phúc Đào
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 10 2021 lúc 21:35

Xét tứ giác BDEA có 

\(\widehat{BDA}=\widehat{BEA}=90^0\)

nên BDEA là tứ giác nội tiếp

hay B,D,E,A cùng thuộc 1 đường tròn

Ly huy
Xem chi tiết
Toán Hình THCS
Xem chi tiết
Aug.21
5 tháng 6 2019 lúc 12:25

bạn tự vẽ hình nhé !

                                                                    Giải

a,Ta có :\(\widehat{BAB'}=\widehat{AB'A'}=\widehat{B'A'B}=1v\)( nội tiếp nửa đường tròn )

\(\Rightarrow ABA'B'\)là hình chữ nhật

b, Ta có : BH // CA' (cùng vuông góc với AC )

               BA' // CH ( cùng vuông góc với AB )

\(\Rightarrow BHCA'\)là hình bình hành nên BH = CA' 

 c, \(\Delta BHC=\Delta BA'C\)nên đường tròn ngoại tiếp tam giác BHC bằng đường tròn ngoại tiếp tam giác BA'C

Mà đường tròn ngoại tiếp tam giác BA'C chính là đường tròn (O)

Vậy bán kính đường tròn ngoại tiếp tam giác BHC bằng R

 a) tứ giác ABA'B' có AA', BB' là hai đương chéo bằng nhau ( = 2R) 
=> ABA'B' là hình chữ nhật. 

b) ta có : 
CH _I_ AB ( H là trực tâm của tam giác ABC ) 
A'B _I_ AB ( ABA' chắn nửa đường tròn ) 
=> CH // A'B (1) 
Lại có : 
BH _I_ AC ( H là trực tâm của tam giác ABC ) 
A'C _I_ AC ( ACA' chắn nửa đường tròn ) 
=> A'C // BH (2) 
(1),(2) => BHCA' là hình bình hành 
=> BH=CA' 

c) kéo dài AH cắt đường tròn ngoại tiếp ABC tại D. Dễ dàng nhận thấy D và H đối xứng nhau qua BC ---> tam giác BCD = tam giác BCH --> đường tròn ngoại tiếp BCH = đường tròn ngoại tiếp BCD (đồng thời ngoại tiếp ABC) --> bán kính đường tròn ngoại tiếp BHC = R 

Toán Hình THCS
11 tháng 6 2019 lúc 10:37

cảm ơn bạn nha !

minh
Xem chi tiết
bảo anh
26 tháng 2 2019 lúc 20:29

A B C H Q K F E D

a, Do H là giao điểm của 2 đường cao tam giác ABC mà AH cắt BC tại D \(\Rightarrow AD\perp BC\)

\(\Rightarrow\widehat{ADB}=90^o\)

Xét tứ giác BFHD có \(\widehat{HFB}=90^o\)

\(\widehat{ADB}=90^o\)

\(\Rightarrow\widehat{HFB}+\widehat{ADB}=180^o\)

Vậy tứ giác BFHD là tứ giác nội tiếp đường tròn

Hà Tiểu Quỳnh
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 11 2023 lúc 23:00

a: Xét tứ giác BEDC có \(\widehat{BEC}=\widehat{BDC}=90^0\)

nên BEDC là tứ giác nội tiếp

b: Xét ΔAEC vuông tại E và ΔADB vuông tại D có

\(\widehat{EAC}\) chung

Do đó: ΔAEC đồng dạng với ΔADB

=>\(\dfrac{AE}{AD}=\dfrac{AC}{AB}\)

=>\(AE\cdot AB=AD\cdot AC\)

Xét ΔABC có

CE,BD là đường cao

CE cắt BD tại H

DO đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC tại M

Xét tứ giác AEHD có

\(\widehat{AEH}+\widehat{ADH}=90^0+90^0=180^0\)

=>AEHD là tứ giác nội tiếp

=>\(\widehat{EDH}=\widehat{EAH}\)

=>\(\widehat{EDB}=\widehat{BAH}=90^0-\widehat{ABC}\left(1\right)\)

Xét tứ giác HDCM có

\(\widehat{HDC}+\widehat{HMC}=90^0+90^0=180^0\)

=>HDCM là tứ giác nội tiếp

=>\(\widehat{HDM}=\widehat{HCM}\)

=>\(\widehat{MDB}=\widehat{ECB}=90^0-\widehat{ABC}\left(2\right)\)

Từ (1),(2) suy ra \(\widehat{EDB}=\widehat{MDB}\)

=>DB là phân giác của \(\widehat{EDM}\)