Xét tứ giác BDEA có
\(\widehat{BDA}=\widehat{BEA}=90^0\)
nên BDEA là tứ giác nội tiếp
hay B,D,E,A cùng thuộc 1 đường tròn
Xét tứ giác BDEA có
\(\widehat{BDA}=\widehat{BEA}=90^0\)
nên BDEA là tứ giác nội tiếp
hay B,D,E,A cùng thuộc 1 đường tròn
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H và cắt đường tròn (O) lần lượt tại M, N, P. Chứng minh rằng:
b) Bốn điểm B, C, E, F cùng nằm trên một đường tròn
Bài 1. Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H và cắt đường tròn (O) lần lượt tại M,N,P.
Chứng minh rằng: Tứ giác CEHD, nội tiếp .Bốn điểm B,C,E,F cùng nằm trên một đường tròn.AE.AC = AH.AD; AD.BC = BE.AC.H và M đối xứng nhau qua BC.Xác định tâm đường tròn nội tiếp tam giác DEF.Bài 2. Cho tam giác cân ABC (AB = AC), các đường cao AD, BE, cắt nhau tại H. Gọi O là tâm đường tròn ngoại tiếp tam giác AHE.
Chứng minh tứ giác CEHD nội tiếp .Bốn điểm A, E, D, B cùng nằm trên một đường tròn.Chứng minh ED = 1/2BC.Chứng minh DE là tiếp tuyến của đường tròn (O).Tính độ dài DE biết DH = 2 Cm, AH = 6 Cm.Bài 4 (3,5 điểm):
1. Cho tam giác abc có ba góc nhọn nội tiếp (O:R). Hạ các đường cao AD, BE của tam giác cắt nhau tại H và kẻ đường kính CF của (O)
a) Chứng minh các điểm A, E, D, B cùng nằm trên một đường tròn.
b) Chứng minh tứ giác AHBF là hình bình hành.
c) Cho (O) và dây AB cố định, điểm C di chuyển trên cung lớn AB. Chứng minh rằng độ dài bán kính đường tròn ngoại tiếp tam giác CDE luôn không đổi.
Bài 2. Cho tam giác cân ABC (AB = AC), các đường cao AD, BE, cắt nhau tại H. Gọi O là tâm đường tròn ngoại tiếp tam giác AHE.
1. Chứng minh tứ giác CEHD nội tiếp .
2. Bốn điểm A, E, D, B cùng nằm trên một đường tròn.
3. Chứng minh ED = 1/2 BC.
4. Chứng minh DE là tiếp tuyến của đường tròn (O).
5. Tính độ dài DE biết DH = 2 cm, AH = 6 cm.
Bài 3. Cho nửa đường tròn đường kính AB = 2R. Từ A và B kẻ hai tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt các tiếp tuyến Ax , By lần lượt ở C và D. Các đường thẳng AD và BC cắt nhau tại N. Chứng minh:
1. AC + BD = CD
2. Góc COD = 900
3. AC.BD = 1/4 AB2
4. OC // BM
5. AB là tiếp tuyến của đường tròn đường kính CD.
6. MN vuông góc AB.
7. Xác định vị trí của M để chu vi tứ giác ACDB đạt giá trị nhỏ nhất.
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H và cắt nhau tại đường tròn (O) lần lượt tại M, N, P.
Chứng minh rằng:
1: Tứ giác CEHD, nội tiếp.
2: Bốn điểm B, C, E, F cùng nằm trên một đường tròn
3: AE. AC = AH. AD ; AD. BC = BE. AC
4: H và M đối xứng nhau qua BC.
5: Xác định tâm đường tròn nội tiếp tam giác DEF.
Cho tam giác ABC cân tại A, các đường cao AD và BE cắt nhau tại H.
a, Chứng minh 4 điểm A,E, D, B cùng nằm trên một đường tròn.
b, Chứng minh tam giác BDE là tam giác cân.
c, Gọi O là tâm của đường tròn ngoại tiếp tam giác AHE . Chứng minh DE là tiếp tuyến của đường tròn O.
Cho tam giác ABC có ba góc nhọn. Đường tròn (O; R) có đường kính BC cắt AB, AC lần lượt tại F và E; BE cắt CF tại H
a, Chứng minh tứ giác AFHE nội tiếp. Từ đó, xác định tâm I của đường tròn ngoại tiếp tứ giác này
b, Tia AH cắt BC tại D. Chứng minh HE.HB = 2HD.HI
c, Chứng minh bốn điểm D, E, I, F cùng nằm trên một đường tròn
cho tam giác abc có ba góc nhọn nội tiếp đường tròn(o).các đường cao ad,be,cf cắt nhau tại h.chứng minh rằng.
a.bốn điểm b,c,e,f cùng nằm trên một đường tròn.
b.ae.ac=ah.ad;ad.bc=be.ac
Bài 1. Cho tam giác cân ABC (AB = AC), các đường cao AD, BE, cắt nhau tại H. Gọi O là tâm đường tròn ngoại tiếp tam giác AHE.
Chứng minh tứ giác CEHD nội tiếp .Bốn điểm A, E, D, B cùng nằm trên một đường tròn.Chứng minh ED = 1/2BC.