Đặt Biến Phụ Dạng Hồi Quy:
\(x^{4}+x^{3}-4x^{2}+x+1=0\)
Đặt biến phụ dạng hồi quy
x⁴ + x³ - 4x² + x + 1
=\(x^4-x^3+2x^3-2x^2-2x^2+2x-x+1\)
=\(x^3\left(x-1\right)+2x^2\left(x-1\right)-2x\left(x-1\right)-\left(x-1\right)\)
=\(\left(x-1\right)\left(x^3+2x^2-2x-1\right)\)
=\(\left(x-1\right)\left(x^3-x^2+3x^2-3x+x-1\right)\)
=\(\left(x-1\right)\left(x^2\left(x-1\right)+3x\left(x-1\right)+\left(x-1\right)\right)\)
= \(\left(x-1\right)^2\left(x^2+3x+1\right)\)
Chuc ban hoc tot
Mình nghĩ đề là giải pt: \(x^4+x^3-4x^2+x+1=0\)
Nhận xét x = 0 không phải là nghiệm. Xét x khác 0, chia + nhân 2 vế cho x2.
\(PT\Leftrightarrow x^2\left(x^2+x-4+\frac{1}{x}+\frac{1}{x^2}\right)=0\)
\(\Leftrightarrow x^2\left[\left(x+\frac{1}{x}\right)^2+\left(x+\frac{1}{x}\right)-6\right]=0\)
\(\Leftrightarrow x^2\left(x+\frac{1}{x}-2\right)\left(x+\frac{1}{x}+3\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x^2+3x+1\right)=0\)(chú ý rằng phân tích này vẫn đúng trong trường hợp x = 0)
Khi đó ta sẽ dễ dàng trình bày lại lời giải như Upin & Ipin
Ai giúp mình với ạ, Cám ơn nhé!
1) Phân tích đa thức thành nhân từ bằng phương pháp đặt biến phụ dạng hồi quy:
a) 6x^4 + 5x^3 - 38x^2 + 5x + 6
b) x^4 - 10x^3 - 15x^2 + 20x + 4
Phân tích đa thức thành nhân tử( Phương pháp đặt biến phụ dạng hồi quy)
\(x^4-10x^3-15x^2+20x+4\)
Cân lun!
\(x^4-10x^3-15x^2+20x+4\)
\(=x^4-x^3-9x^3+9x^2-24x^2+24x-4x+4\)
\(=x^3\left(x-1\right)-9x^2\left(x-1\right)-24x\left(x-1\right)-4\left(x-1\right)\)
\(=\left(x-1\right)\left(x^3-9x^2-24x-4\right)\)
\(=\left(x-1\right)\left(x^3+2x^2-11x^2-22x-2x-4\right)\)
\(=\left(x-1\right)\left[x^2\left(x+2\right)-11x\left(x+2\right)-2\left(x+2\right)\right]\)
\(=\left(x-1\right)\left(x+2\right)\left(x^2-11x-2\right)\)
Chúc bạn học tốt!!!
phân tích đa thức thành nhân tử dạng đặt biến phụ
1, (x-1)(x+2)(x+3)(x-6)+32x^2
2, (x+1)(x-4)(x+2)(x-8)+4x^2
1, (x-1)(x+2)(x+3)(x-6)+32x^2
= (x^2 - 7x + 6)(x^2 + 5x + 6) + 32x^2
đặt x^2 - x + 6 = a ta có
(a - 6x)(a + 6x) + 32x^2
= a^2 - 36x^2 + 32x^2
= a^2 - 4x^2
= (a - 2x)(a + 2x)
= (x^2 - x + 6 - 2x)(x^2 - x + 6 + 2x)
= (x^2 - 3x + 6)(x^2 + x + 6)
2, (x+1)(x-4)(x+2)(x-8)+4x^2
= (x^2 + 7x - 8)(x^2 - 2x - 8) + 4x^2
đặt x^2 + 2,5x - 8 = a ta có
(a + 4,5x)(a - 4,5x) + 4x^2
= a^2 - 81/4x^2 + 4x^2
= a^2 - 65/4x^2
\(=\left(a-\sqrt{\frac{65}{4}}x\right)\left(a+\sqrt{\frac{65}{4}}x\right)=\left(x^2+\frac{5}{2}x-8+\sqrt{\frac{65}{4}}x\right)\left(x^2+\frac{5}{2}x-8-\sqrt{\frac{65}{4}x}\right)\)
Phân tích đa thức thành nhân tử :
* Đặt biến dạng hồi quy :
1) x4 + x3 - 4x2 + x +1
2) x4 + 5x3 - 12x2 +5x + 1
3) x4 - 10x3 + 26x2 - 10x + 1
4) x4 - 10x3 + 15x2 + 20x + 4
giải phương trình sau đặt biến phụ
1) 2x^3+7x^2+7x+2=0
2) x^3-8x^2-8x+1=0
3) x^5+2x^4+4x^2-3x+1=0
4) x^4+x^3+x^2+x+1=0
\(2x^3+7x^2+7x+2=0\)
\(\Leftrightarrow\left(2x^3+4x^2\right)+\left(3x^2+6x\right)+\left(x+2\right)=0\)
\(\Leftrightarrow2x^2\left(x+2\right)+3x\left(x+2\right)+\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(2x^2+3x+1\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left[2x\left(x+1\right)+\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+1\right)\left(2x+1\right)=0\)
.......................................................................................
\(x^3-8x^2-8x+1=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)-8x\left(x+1\right)=0\)
......................................................................................
Giải phương trình sau bằng cách đặt biến phụ
x^4+4x^3+6x^2 +4x+1=0
Mình ko biết đặt biến phụ nên mình sẽ giải bừa :>
\(x^4+4x^3+6x^2+4x+1=0\)
\(\Leftrightarrow x^4+2x^3+x^2+2x^3+4x^2+2x+x^2+2x+1=0\)
\(\Leftrightarrow x^2\left(x^2+2x+1\right)+2x\left(x^2+2x+1\right)+\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x^2+2x+1\right)\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)^4=0\Leftrightarrow x=-1\)
Thấy ngay x= 0 không phải là nghiệm của pt. Chia 2 vế của pt cho x2 ta được:
\(x^2+4x+6+4.\frac{1}{x}+\frac{1}{x^2}=0\)
\(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)+4\left(x+\frac{1}{x}\right)+6=0\left(1\right)\)
Đặt \(x+\frac{1}{x}=t\Rightarrow\left(x+\frac{1}{x}\right)^2=t^2\Rightarrow x^2+\frac{1}{x^2}=t^2-2\) Khi đó ta có:
\(\left(1\right)\Leftrightarrow t^2-2+4t+6=0\)
\(\Leftrightarrow t=-2\Leftrightarrow x+\frac{1}{x}=-2\Leftrightarrow x^2+2x+1=0\Leftrightarrow x=-1\)
Vậy pt có 1 nghiệm x = -1
Tìm x bằng cách đặt biến số phụ
a) (x^2+x)^2 - x(x+1)-2 = 0
b) (x-1)*(x-2)*(x-3)*(x-4)-24 = 0
Phân tích đa thức thành nhân tử ( đặt biến phụ):
a) (x^2+x)^2-14(x^2+x) + 24
b) (x^2+x)^2 + 4x^2+4x-12
c) x^4 + 2x^3+ 5x^2+4x-12
d) (x+1)(x+2)(x+3)(x+4)+1
e) (x+1)(x+3)(x+5)(x+7)+15
f) (x+1)(x+2)(x+3)(x+4)-24