Cho tam giác nhọn ABC . gọi a,b,c lần lượt là đọ dài các cạnh đối diện với đỉnh ABC . CMR a / sin A = b / sin B = c / sin C.
Cho tam giác nhọn ABC. Gọi a, b, c lần lượt là độ dài các cạnh đối diện với các đỉnh A, B, C. Chứng minh rằng: a/ sin A= b/ sin B= c/ sinC
Bạn tham khảo lời giải tại đây:
https://hoc24.vn/hoi-dap/tim-kiem?id=62067&q=cho%20tam%20gi%C3%A1c%20ABC%20nh%E1%BB%8Dn%20c%C3%B3%20BC%3Da%3B%20AC%3Db%3B%20AB%3Dc%3BCMR%3A%20a%2FsinA%3Db%2FsinB%3Dc%2Fsin%20C
Bài 1.
Cho tam giác ABC nhọn. Gọi a, b, c lần lượt là độ dài các cạnh đối diện với các góc A, B, C.
a, Cmr a / sin A = b / sin B = c / sin C
b, Có thể xảy ra đẳng thức sin A = sin B + sin C không ? Vì sao?
Bài 2.
Cho tam giác ABC có góc nhọn B = α.
a, Biết cos α = 0,4, hãy tính sin α, tan α, cotg α.
b, Biết cos α - sin α = 1/5. Tính cotg α.
Giúp e với nak, càng nhanh càng tốt. E cảm ơn nhìu
Bài 2:
a: \(\sin\alpha=\sqrt{1-\left(\dfrac{2}{5}\right)^2}=\dfrac{\sqrt{21}}{5}\)
\(\tan\alpha=\dfrac{\sqrt{21}}{5}:\dfrac{2}{5}=\dfrac{\sqrt{21}}{2}\)
\(\cot\alpha=\dfrac{2}{\sqrt{21}}=\dfrac{2\sqrt{21}}{21}\)
b: Đặt \(\cos\alpha=a;\sin\alpha=b\)
Theo đề, ta có: a-b=1/5
=>a=b+1/5
Ta có: \(a^2+b^2=1\)
\(\Leftrightarrow b^2+\dfrac{2}{5}b+\dfrac{1}{25}+b^2-1=0\)
\(\Leftrightarrow2b^2+\dfrac{2}{5}b-\dfrac{24}{25}=0\)
\(\Leftrightarrow10b^2+2b-24=0\)
=>b=4/5
=>a=3/5
\(\cot\alpha=\dfrac{a}{b}=\dfrac{3}{4}\)
cho\(\Delta\)ABC nhọn gọi a,b,c lần lượt là độ dài các cạch đối diện của các góc A,B,C. CM \(\frac{a}{\sin A}\)=\(\frac{b}{\sin B}\)=\(\frac{c}{\sin C}\)
ta có :
a) Cho tam giác ABC có 3 góc nhọn. CMR: \(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\)
* Áp dụng : Cho Góc xOy =30 độ, A và B lần lượt là 2 điểm trên Ox và Oy sao cho AB=1.Tính giá trị lớn nhất của độ dài OB
b) Tam giác ABC có góc A nhọn. CMR: \(S\)của Tam giác ABC=\(\frac{1}{2}b.c.\sin A\)
* Áp dụng: Cho tam giác ABC có góc A = 40 độ, AB=4 cm, AC=7 cm. Tính S cua tam giác ABC.
Đã xảy ra lỗi rồi. Bạn thông cảm vì sai sót này.
Ta có:
Áp dụng hệ quả của bất đẳng thức Cauchy cho ba số không âm
trong đó với , ta có:
Tương tự, ta có:
Cộng ba bất đẳng thức và , ta được:
Khi đó, ta chỉ cần chứng minh
Thật vậy, bất đẳng thức cần chứng minh được quy về dạng sau: (bất đẳng thức Cauchy cho ba số )
Hay
Mà đã được chứng minh ở câu nên luôn đúng với mọi
Dấu xảy ra
Vậy,
Cho tam giác nhọn ABC : a, b, c lần lượt là độ dài các cạnh đối diện với các đỉnh A, B, C Cm : a/sinA = b/sinB = c/sinC
Tự vẽ hình
Kẻ BH \(\perp\)AC và \(CK\perp\)AB
Tam giác AKC vuông tại K
=>CK=bsinA (1)
Tam giác BKC vuông tại K
=>CK=asinB (2)
Từ (1) (2)=>bsinA=asinB
<=>\(\frac{a}{sinA}=\frac{b}{sinB}\)
Chứng minh tương tự ta có :\(\frac{a}{sinA}=\frac{c}{sinC}\)
Vậy ....
cho tam giác ABC với các đỉnh A,B,C và các cạnh đối diện với các đỉnh tương ứng a,b,c. Gọi D là chân đường phân giác trong góc A. chứng minh rằng
a) \(\sin\frac{A}{2}.\sin\frac{B}{2}.\sin\frac{C}{2}\le\frac{1}{8}\)
b) \(AD=\frac{2bc.\cos\left(\frac{A}{2}\right)}{b+c}\)
giúp mình với mình cần gấp trưa nay!!!!
cho tam giác ABC có AB = c , BC = a , AC = b và b+ c = 2a . CM : a. 2sin A = sin B+sin C b. 2/ ha = 1/hb + 1/hc ( với ha , hb , hc lần lượt là chiều cao của tam giác ứng với các cạnh a , b , c )
Cho tam giác ABC có \(\frac{\sin B+2018\sin C}{2018\cos B+\cos C}=\sin A\)và độ dài các cạnh là các số tự nhiên. Gọi M là trung điểm của cạnh BC và G là trọng tâm tam giác ABC. Chứng minh rằng tam giác MBG có diện tích là một số tự nhiên
LÀM HỘ MK NHA!!!
THANKS!!!
Đặt \(m=2018,\frac{\sin B+m\sin C}{m\cos B+\cos C}=\sin A\Leftrightarrow b+mc=a\left(m\cos B+\cos C\right)\)
\(\Leftrightarrow b+mc=\frac{m\left(a^2+c^2-b^2\right)}{2c}+\frac{a^2+b^2-c^2}{2b}\)
\(\Leftrightarrow2bc\left(b+mc\right)=mb\left(a^2+c^2-b^2\right)+c\left(a^2+b^2-c^2\right)\)
\(\Leftrightarrow2b^2c+2mbc^2=mba^2+mbc^2-mb^3+ca^2+cb^2-c^3\)
\(\Leftrightarrow\left(c+mb\right)\left(b^2+c^2-a^2\right)=0\Leftrightarrow a^2=b^2+c^2\)
Vậy tam giác ABC vuông tại A
Dễ dàng CM được \(S_{ABC}=6.S_{MBG}\Rightarrow bc=12.S_{MBG}\).Do vậy ta cần CM bc chia hết cho 12
( ta sử dụng tính chất của số chính phương)
- Số chính phương chia 3 chỉ dư 0 hoặc 1
- Số chính phương chia 4 chỉ dư 0 hoặc 1
- Số chính phương lẻ chia 8 chỉ dư 1
*) Ta thấy trong 2 số \(b^2,c^2\)có ít nhất 1 số chia hết cho 3. giả sử không có số nào trong 2 số đó chia hết cho 3. Khi đó mỗi số đều chia 3 dư 1. Do đó a2 chia 3 dư 2 ( trái với tính chất số chính phương)
Do 3 là số nguyên tố nên trong 2 số b,c có ít nhất 1 số chia hết cho 3 . (1)
*)Chứng minh trong 2 số b,c có ít nhất 1 số chia hết cho 4. giả sử không có số nào trong 2 số đó chia hết cho 4. Khi đó \(b=4m+r;c=4n+q;r,q\in\left\{1;2;-1\right\}\)
+ Nếu \(r,q\in\left\{1;-1\right\}\Rightarrow a^2\)chia 4 dư 2 ( vô lý)
+ Nếu \(r\in\left\{-1;1\right\},q=2\) hoặc ngược lại thì a2 là số lẻ và a2 chia 8 dư 5 ( vô lý)
+ Nếu r=q=2 thì \(a^2=4\left(2m+1\right)^2+4\left(2n+1\right)^2\Rightarrow\)a chẵn
Đặt \(a=2p\Rightarrow p^2=\left(2m+1\right)^2+\left(2n+1\right)^2\Rightarrow p^2\)chia 4 dư 2 ( vô lý)
Vậy trong 2 số b,c có ít nhất 1 số chia hết cho 4 (2)
Từ (1) và (2) => đpcm
cho tam giác abc nhọn và b + c = 2a
c/m a) sin B + sin C = 2 sin A
b) 2/ha = 1/hb = 1/hc ( với ha , hb, hc là độ dài đường cao tương ứng với 3 cạnh )