Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
thằng việt
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 12 2021 lúc 20:39

a: \(\Leftrightarrow\left(x+2\right)\left(x+2-2x+10\right)=0\)

\(\Leftrightarrow x\in\left\{-2;12\right\}\)

trần thị hoàng yến
Xem chi tiết
nguyenvankhoi196a
5 tháng 11 2017 lúc 17:11

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

Đường Quỳnh Giang
30 tháng 9 2018 lúc 5:18

\(\left(x+6\right)\left(2x+1\right)=0\)

<=>  \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)

<=>  \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)

Vậy....

hk tốt

^^

UZUMAKI NARUTO
Xem chi tiết
Phương An
30 tháng 11 2016 lúc 9:17

\(2x^2-7x+5=0\)

\(2x^2-2x-5x+5=0\)

\(2x\left(x-1\right)-5\left(x-1\right)=0\)

\(\left(x-1\right)\left(2x-5\right)=0\)

\(\left[\begin{array}{nghiempt}x-1=0\\2x-5=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=1\\2x=5\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=1\\x=\frac{5}{2}\end{array}\right.\)

\(x\left(2x-5\right)-4x+10=0\)

\(x\left(2x-5\right)-2\left(2x-5\right)=0\)

\(\left(2x-5\right)\left(x-2\right)=0\)

\(\left[\begin{array}{nghiempt}x-2=0\\2x-5=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=2\\2x=5\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=2\\x=\frac{5}{2}\end{array}\right.\)

\(\left(x-5\right)\left(x+5\right)-x\left(x-2\right)=15\)

\(x^2-25-x^2+2x=15\)

\(2x=15+25\)

\(2x=40\)

\(x=\frac{40}{2}\)

\(x=20\)

\(x^2\left(2x-3\right)-12+8x=0\)

\(x^2\left(2x-3\right)+4\left(2x-3\right)=0\)

\(\left(2x-3\right)\left(x^2+4\right)=0\)

\(2x-3=0\) (vì \(x^2\ge0\Rightarrow x^2+4\ge4>0\))

\(2x=3\)

\(x=\frac{3}{2}\)

\(x\left(x-1\right)+5x-5=0\)

\(x\left(x-1\right)+5\left(x-1\right)=0\)

\(\left(x-1\right)\left(x+5\right)=0\)

\(\left[\begin{array}{nghiempt}x-1=0\\x+5=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=1\\x=-5\end{array}\right.\)

\(\left(2x-3\right)^2-4x\left(x-1\right)=5\)

\(4x^2-12x+9-4x^2+4x=5\)

\(-8x=5-9\)

\(-8x=-4\)

\(x=\frac{4}{8}\)

\(x=\frac{1}{2}\)

\(x\left(5-2x\right)+2x\left(x-1\right)=13\)

\(5x-2x^2+2x^2-2x=13\)

\(3x=13\)

\(x=\frac{13}{3}\)

\(2\left(x+5\right)\left(2x-5\right)+\left(x-1\right)\left(5-2x\right)=0\)

\(\left(2x+10\right)\left(2x-5\right)-\left(x-1\right)\left(2x-5\right)=0\)

\(\left(2x-5\right)\left(2x+10-x+1\right)=0\)

\(\left(2x-5\right)\left(x+11\right)=0\)

\(\left[\begin{array}{nghiempt}2x-5=0\\x+11=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}2x=5\\x=-11\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=\frac{5}{2}\\x=-11\end{array}\right.\)

T.Thùy Ninh
21 tháng 6 2017 lúc 9:34

\(a,2x^2-7x+5=0\Leftrightarrow2x^2-2x-5x+5=0\Leftrightarrow2x\left(x-1\right)-5\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(2x-5\right)=0\Rightarrow\left[{}\begin{matrix}x-1=0\\2x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\2x=5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=2,5\end{matrix}\right.\)\(b,x\left(2x-5\right)-4x+10=0\Rightarrow x\left(2x-5\right)-2\left(2x-5\right)=0\Leftrightarrow\left(x-2\right)\left(2x-5\right)=0\Rightarrow\left[{}\begin{matrix}x-2=0\\2x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\2x=5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=2,5\end{matrix}\right.\)\(c,\left(x-5\right)\left(x+5\right)-x\left(x-2\right)=15\Leftrightarrow x^2-25-x^2+2x-15=0\Leftrightarrow2x-40=0\Rightarrow2x=40\Rightarrow x=20\)\(d,x^2\left(2x-3\right)-12+8x=0\Rightarrow2x^3-3x^2-12+8x=0\Leftrightarrow2x^3+8x-3x^2-12=0\Leftrightarrow2x\left(x^2+4\right)-2\left(x^2+4\right)=0\Leftrightarrow\left(2x-2\right)\left(x^2+4\right)=0\Rightarrow\left[{}\begin{matrix}2x-2=0\\x^2+4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=2\\x^2=-4\end{matrix}\right.\Rightarrow x=1\)

Nguyệt Hi
Xem chi tiết
Nguyễn Nho Bảo Trí
21 tháng 6 2021 lúc 22:42

a) (2x + 1)(1 - 2x) + (1 - 2x)2 = 18

= ( 1 - 2x) \(\left[\left(2x+1+1-2x\right)\right]\) = 18

= 2(1 - 2x)  - 18 = 0

= 2 - 4x - 18 = 0

= -16 - 4x = 0

= -4x = 16

= x = \(\dfrac{16}{-4}=-4\)

b) 2(x + 1)2 -(x - 3)(x + 3) - (x - 4)2 = 0

= 2 (x2 + 2x + 1) - (x2 - 9) - (x2 - 8x + 16) = 0

= 2x2 + 4x + 2 - x2 + 9 - x2 + 8x - 16 = 0

= 12x - 5 = 0

= 12x = 5

= x = \(\dfrac{5}{12}\)

c) (x - 5)2 - x(x - 4) = 9

= x2 - 10x + 25 - x2 + 4x - 9 = 0

= -6x + 16 = 0

= -6x = -16

= x = \(\dfrac{-16}{-6}=\dfrac{8}{3}\)

d) (x - 5)2 + (x - 4)(1 - x)

= x2 - 10x + 25 + 5x - x2 - 4 = 0

= -5x + 21 = 0

= -5x = -21

= x = \(\dfrac{-21}{-5}=\dfrac{21}{5}\) 

 Chúc bạn học tốt

Someguyy
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 12 2021 lúc 11:36

a: \(\Leftrightarrow\left(x+2\right)\left(12-x\right)=0\)

\(\Leftrightarrow x\in\left\{-2;12\right\}\)

b: \(\Leftrightarrow\left(2x+5\right)\left(x-1\right)=0\)

\(\Leftrightarrow x\in\left\{-\dfrac{5}{2};1\right\}\)

Nguyệt Tích Lương
Xem chi tiết
Rin Huỳnh
31 tháng 8 2021 lúc 16:16

a)  (x - 3)2 - 5.(x - 2) + 5 = 0.

<=> x^2 - 6x + 9 - 5x + 10 + 5 = 0

<=> x^2 - 11x + 24 = 0

<=> (x-3)(x-8)=0

<=> x = 3 hoặc x = 8

Rin Huỳnh
31 tháng 8 2021 lúc 16:17

b) (2x - 1)2 - 3.(x - 2).(x + 2) - 25 = 0.

<=> 4x^2 - 4x + 1 - 3x^2 + 12 - 25 = 0

<=> x2 - 4x - 12 = 0

<=> (x+2)(x-6) = 0

<=> x = -2 hoặc x = 6

Rin Huỳnh
31 tháng 8 2021 lúc 16:18

d)  x2 - 4x + 5 = 0.

<=> (x - 2)2 = -1 (vô lý)

Vậy phương trình vô nghiệm

Duc Thang
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
1 tháng 9 2020 lúc 19:58

( 2x - 3 )( x + 1 ) - 2x2 + 6x = 0

<=> 2x2 - x - 3 - 2x2 + 6x = 0

<=> 5x - 3 = 0

<=> 5x = 3

<=> x = 3/5

( x2 - x + 1 )( x - 3 ) - x3 + 4x2 = 0

<=> x3 - 4x2 + 4x - 3 - x3 + 4x2 = 0

<=> 4x - 3 = 0

<=> 4x = 3

<=> x = 3/4

( x2 - 2 )( x2 + 2 ) - x4 - 2x + 5 = 0

<=> ( x2 )2 - 4 - x4 - 2x + 5 = 0

<=> x4 + 1 - x4 - 2x = 0

<=> 1 - 2x = 0

<=> 2x = 1

<=> x = 1/2

( x - 3 )( x2 - 3x + 2 ) - ( x2 - 2x - 7 )( x - 2 ) + 2x2 - 2x = 0

<=> x3 - 6x+ 11x - 6 - ( x3 - 4x2 - 3x + 14 ) + 2x2 - 2x = 0

<=> x3 - 6x+ 11x - 6 - x3 + 4x2 + 3x - 14 + 2x2 - 2x = 0

<=> 12x - 20 = 0

<=> 12x = 20

<=> x = 20/12 = 5/3

Khách vãng lai đã xóa
ミ★Ƙαї★彡
1 tháng 9 2020 lúc 20:13

a, \(\left(2x-3\right)\left(x+1\right)-2x^2+6x=0\)

\(\Leftrightarrow2x^2+2x-3x-3-2x^2+6x=0\Leftrightarrow5x-3=0\Leftrightarrow x=\frac{3}{5}\)

b, \(\left(x^2-x+1\right)\left(x-3\right)-x^3+4x^2=0\)

\(\Leftrightarrow x^3-3x^2-x^2+3x+x-3-x^3+4x^2=0\Leftrightarrow4x-3=0\Leftrightarrow x=\frac{3}{4}\)

c ; d tương tự nhé ! 

Khách vãng lai đã xóa
Hoàng Vũ Nguyễn Võ
Xem chi tiết
Lấp La Lấp Lánh
21 tháng 8 2021 lúc 9:58

a) \(\left(x+3\right)^2-\left(x-2\right)^3=\left(x+5\right)\left(x^2-5x+25\right)-108\)

\(\Leftrightarrow x^2+6x+9-x^2+4x-4=x^3-5x^2+25x+5x^2-25x+125-108\)

\(\Leftrightarrow x^3-10x+12=0\Leftrightarrow\left(x-2\right)\left(x^2+2x+6\right)=0\)

\(\Leftrightarrow x=2\)( do \(x^2+2x+6=\left(x+1\right)^2+4\ge4>0\))

Hà Trí Kiên
Xem chi tiết
Akai Haruma
27 tháng 6 2023 lúc 17:58

1. 

$(3^2-2^3)x+3^2.2^2=4^2.3$

$\Leftrightarrow x+36=48$

$\Leftrightarrow x=48-36=12$

2.

$x^5-x^3=0$

$\Leftrightarrow x^3(x^2-1)=0$

$\Leftrightarrow x^3(x-1)(x+1)=0$

$\Leftrightarrow x^3=0$ hoặc $x-1=0$ hoặc $x+1=0$

$\Leftrightarrow x=0$ hoặc $x=\pm 1$
3.

$(x-1)^2+(-3)^2=5^2(-1)^{100}$

$\Leftrightarrow (x-1)^2+9=25$

$\Leftrightarrow (x-1)^2=25-9=16=4^2=(-4)^2$

$\Rightarrow x-1=4$ hoặc $x-1=-4$

$\Leftrightarrow x=5$ hoặc $x=-3$

4.

$(2x-1)^2-(2x-1)=0$

$\Leftrightarrow (2x-1)(2x-1-1)=0$

$\Leftrightarrow (2x-1)(2x-2)=0$

$\Leftrightarrow 2x-1=0$ hoặc $2x-2=0$

$\Leftrightarrow x=\frac{1}{2}$ hoặc $x=1$

$\Lef

『Kuroba ム Tsuki Ryoo...
27 tháng 6 2023 lúc 18:02

`@` `\text {Ans}`

`\downarrow`

\((3^2-2^3)x+3^2.2^2=4^2.3\)

`=> x + (3*2)^2 = 48`

`=> x+6^2 = 48`

`=> x + 36 = 48`

`=> x = 48 - 36`

`=> x=12`

Vậy, `x=12`

\(x^5-x^3=0\)

`=> x^3(x^2 - 1)=0`

`=>`\(\left[{}\begin{matrix}x^3=0\\x^2-1=0\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=0\\x^2=1\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=0\\x=\pm1\end{matrix}\right.\)

Vậy, `x \in {0; +- 1 }`

\(\left(x-1\right)^2+\left(-3\right)^2=5^2\cdot\left(-1\right)^{100}\)

`=> (x-1)^2 + 9 = 25*1`

`=> (x-1)^2 + 9 = 25`

`=> (x-1)^2 = 25 - 9`

`=> (x-1)^2 = 16`

`=> (x-1)^2 = (+-4)^2`

`=>`\(\left[{}\begin{matrix}x-1=4\\x-1=-4\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=4+1\\x=-4+1\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)

Vậy, `x \in {5; -3}`

\((2x-1)^2-(2x-1)=0\)

`=> (2x-1)(2x-1) - (2x-1)=0`

`=> (2x-1)(2x-1-1)=0`

`=>`\(\left[{}\begin{matrix}2x-1=0\\2x-2=0\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}2x=1\\2x=2\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)

Vậy, `x \in {1; 1/2}`