a) (x - 3)2 - 5.(x - 2) + 5 = 0.
<=> x^2 - 6x + 9 - 5x + 10 + 5 = 0
<=> x^2 - 11x + 24 = 0
<=> (x-3)(x-8)=0
<=> x = 3 hoặc x = 8
b) (2x - 1)2 - 3.(x - 2).(x + 2) - 25 = 0.
<=> 4x^2 - 4x + 1 - 3x^2 + 12 - 25 = 0
<=> x2 - 4x - 12 = 0
<=> (x+2)(x-6) = 0
<=> x = -2 hoặc x = 6
d) x2 - 4x + 5 = 0.
<=> (x - 2)2 = -1 (vô lý)
Vậy phương trình vô nghiệm
c) (x - 1)3 - x2.(x - 2) + 5 = 0.
<=> x^3 - 3x^2 + 3x - 1 - x^3 + 2x^2 + 5 = 0
<=> -x^2 + 3x + 4 = 0 <=> x^2 - 3x - 4 = 0
<=> (x - 4)(x + 1) = 0
<=> x = 4 hoặc x = -1
a: Ta có: \(\left(x-3\right)^2-5\left(x-2\right)+5=0\)
\(\Leftrightarrow x^2-6x+9-5x+10+5=0\)
\(\Leftrightarrow x^2-11x+24=0\)
\(\Leftrightarrow\left(x-8\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=3\end{matrix}\right.\)
b: Ta có: \(\left(2x-1\right)^2-3\left(x-2\right)\left(x+2\right)-25=0\)
\(\Leftrightarrow4x^2-4x+1-3x^2+12-25=0\)
\(\Leftrightarrow x^2-4x-12=0\)
\(\Leftrightarrow\left(x-6\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-2\end{matrix}\right.\)