phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức
2x^2-7x+3
bài 1:phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung
bài 2:phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức
mình cần gấp sos
Bài 2:
1) \(x^2-4x+4=\left(x-2\right)^2\)
2) \(x^2-9=x^2-3^2=\left(x-3\right)\left(x+3\right)\)
3) \(1-8x^3=\left(1-2x\right)\left(1+2x+4x^2\right)\)
4) \(\left(x-y\right)^2-9x^2=\left(x-y\right)^2-\left(3x\right)^2=\left(x-y-3x\right)\left(x-y+3x\right)=\left(-2x-y\right)\left(4x-y\right)\)
5) \(\dfrac{1}{25}x^2-64y^2=\left(\dfrac{1}{5}x-8y\right)\left(\dfrac{1}{5}x+8y\right)\)
6) \(8x^3-\dfrac{1}{8}=\left(2x-\dfrac{1}{2}\right)\left(4x^2+x+\dfrac{1}{4}\right)\)
Bài 2:
7) \(x^3+\dfrac{1}{27}=\left(x+\dfrac{1}{3}\right)\left(x^2+\dfrac{1}{3}x+\dfrac{1}{9}\right)\)
8) \(x^3+64=\left(x+4\right)\left(x^2+4x+16\right)\)
9) \(\left(a+b\right)^2-\left(2a-b\right)^2=\left(a+b+2a-b\right)\left(a+b-2a+b\right)=3a\left(-a+2b\right)\)
10) \(\left(a+b\right)^2-\left(a-b\right)^2=\left(a+b+a-b\right)\left(a+b-a+b\right)=2a\cdot2b=4ab\)
11) \(\left(a+b\right)^3+\left(a-b\right)^3=\left(a+b+a-b\right)\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)
\(=2a\left(a^2+2ab+b^2+a^2-b^2+a^2-2ab+b^2\right)\)
\(=2a\left(3a^2+b^2\right)\)
12) \(\left(6x-1\right)^2-\left(3x+2\right)^2=\left(6x-1+3x+2\right)\left(6x-1-3x-2\right)=\left(9x+1\right)\left(3x-3\right)\)
1:
1: ,4x^2-6x=2x(2x-3)
2: 9x^3y^2+3x^2y^2=3x^2y^2(3x+1)
3: x^3+2x^2+3x=x(x^2+2x+3)
4: 2x^2-4x=2x(x-2)
5: 3x-6y=3(x-2y)
6: x^2-3x=x(x-3)
7: 6x^2y+4xy^2+2xy
=2xy(3x+2y+1)
8: 5x^2(x-2y)-15x(x-2y)
=(x-2y)(5x^2-15x)
=5x(x-3)(x-2y)
9: =3(x-y)+5y(x-y)
=(x-y)(5y+3)
10: =(x-1)(3x+5)
11: =2(2x-1)-3(2x-1)
=-(2x-1)
Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức:
16 - ( a-b)2
\(=\left(4-a+b\right)\left(4+a-b\right)\)
Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức: x3+64
Phân tích đa thức 10x - 25 - x2 thành nhân tử bằng phương pháp dùng hằng đẳng thức.
\(10x-25-x^2=-\left(x^2-10x+25\right)\)
\(=-\left(x^2-2.x.5+5^2\right)=-\left(x-5\right)^2\)
10x - 25 - x2
= x2- 10x - 25
= - ( x2 +10x +25)
= -(x2 + 2.x.5+52 )
= - (x+5 )2
Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức
8x^3 - 125
8x3- 125= (2x)3- 53= (2x-5)[(2x)2+2x5+52 ]=(2x-5)(4x2+10x+25)
\(8x^3-125\)
\(=\left(2x\right)^3-5^3\)
\(=\left(2x-5\right)\left(4x^2+10x+25\right)\)
Áp dụng hằng đẳng thức thứ 7
\(8x^3-125\)
\(=\left(2x\right)^3-5^3\)
\(\left(2x-5\right)\left(4x^2-10x+25\right)\)
Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức:
Tìm x:
x2- 10x = -25
\(\Leftrightarrow x^2-10x+25=0\\ \Leftrightarrow\left(x-5\right)^2=0\\ \Leftrightarrow x=5\)
\(x^2-10x+25=0\)
\(x^2-10x+5^2=0\)
\(\left(x-5\right)^2=0\)
Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức:
x3 - 6x2y + 12xy2 - 8y3
Phương pháp dùng hằng đẳng thức để phân tích đa thức thành nhân tử , em cần gấp , giải giùm em ạ
4x^2 - 7x - 2
4x^2 - 7x -2 = 4x^2 - 8x + x - 2 = 4x(x - 2) + (x - 2) = (x -2)(4x + 1)
\(4x^2-7x-2=4x^2-8x+x-2=4x\left(x-2\right)+\left(x-2\right)=\left(x-2\right)\left(4x+1\right)\)
4x2-7x-2
=4x2+x-8x-2
=x(4x+1)-2(4x+1)
=(x-2)(4x+1)
PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ BẰNG PHƯƠNG PHÁP DÙNG HẰNG ĐẲNG THỨC :
1, 7x3 - a3b3
2, (6x -1)2 - (3x + 2)
\(\left(6x-1\right)^2-\left(3x+2\right)\)
\(=36x^2-12x+1-3x-2\)
\(=36x^2-15x-1\)
bn ktra lại đề nhé
hk tốt