Những câu hỏi liên quan
Mai Ngọc Phong
Xem chi tiết
Pham Van Hung
17 tháng 2 2019 lúc 11:29

Áp dụng bất đẳng thức Cauchy-Schwartz, ta có:  \(\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}\ge\frac{\left(1+1+1\right)^2}{2a+b+2b+c+2c+a}=\frac{9}{3\left(a+b+c\right)}=\frac{3}{a+b+c}\)

Dấu "=" xảy ra khi: \(\frac{1}{2a+b}=\frac{1}{2b+c}=\frac{1}{2c+a}\Leftrightarrow2a+b=2b+c=2c+a\)

Bình luận (0)
ASOC
Xem chi tiết
Trần Thu Ha
Xem chi tiết
Lê Văn Toàn
Xem chi tiết
Akai Haruma
17 tháng 7 2021 lúc 22:26

Bạn vui lòng chỉ post 1 bài 1 lần thôi. Đăng nhiều làm loãng box toán đó bạn. 

 

Bình luận (0)
Lê Văn Toàn
Xem chi tiết
Akai Haruma
17 tháng 7 2021 lúc 21:59

Lời giải:

Gọi biểu thức đã cho là $A$.

CM vế 1:

Ta có:

$\frac{a+b}{a+b+c}> \frac{a+b}{a+b+c+d}$

$\frac{b+c}{b+c+d}> \frac{b+c}{a+b+c+d}$

$\frac{c+d}{c+d+a}> \frac{c+d}{a+b+c+d}$

$\frac{d+a}{d+a+b}> \frac{d+a}{a+b+c+d}$

Cộng lại: $A> \frac{2(a+b+c+d)}{a+b+c+d}=2>1$

CM vế 2:

Ta thấy $\frac{a+b}{a+b+c}-\frac{a+b+d}{a+b+c+d}=\frac{-cd}{(a+b+c)(a+b+c+d)}< 0$ với $a,b,c,d>0$

$\Rightarrow \frac{a+b}{a+b+c}< \frac{a+b+d}{a+b+c+d}$

Hoàn toàn tương tự với các phân thức còn lại:

$\Rightarrow A< \frac{3(a+b+c+d)}{a+b+c+d}=3$

Ta có đpcm.

Bình luận (0)
Blue Frost
Xem chi tiết
vũ tiền châu
30 tháng 6 2018 lúc 21:12

Ta có A=\(\left(ab+bc+ca\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-abc\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)

=\(2\left(a+b+c\right)+\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}-\frac{ab}{c}-\frac{bc}{a}-\frac{ca}{b}=2\left(a+b+c\right)\)

Bình luận (0)
vũ tiền châu
30 tháng 6 2018 lúc 21:08

\(A=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2=a^2-ab+b^2+3ab\left(1-2ab\right)+6a^2b^2\)

=\(\left(a+b\right)^2-3ab+3ab-6a^2b^2+6a^2b^2=1\)

2) Ta có \(A=\left(a-1\right)\left(b-1\right)\left(c-1\right)=abc-ab-bc-ca+a+b+c-1=0\)

Bình luận (0)
vũ tiền châu
30 tháng 6 2018 lúc 21:10

bài 3 : Ta có \(A=\left(x-y\right)\left(x^2+xy+y^2\right)-36xy=12\left(x^2+xy+y^2\right)-36xy=12\left(x^2-2xy+y^2\right)\)

\(=12\left(x-y\right)^2=12.12^2=1728\)

Bình luận (0)
Bảo Uyên Ngô
Xem chi tiết
Thiên An
23 tháng 7 2017 lúc 22:03

Ta có  \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{3}{4}\)

\(\Leftrightarrow\frac{b^2c^2+c^2a^2+a^2b^2}{\left(abc\right)^2}=\frac{3}{4}\)

\(\Leftrightarrow\frac{b^2c^2+c^2a^2+a^2b^2}{64}=\frac{3}{4}\)

\(\Leftrightarrow b^2c^2+c^2a^2+a^2b^2=\frac{3.64}{4}=48\)

Do đó  \(T=\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}=\frac{b^2c^2+c^2a^2+a^2b^2}{abc}=\frac{48}{8}=6\)

Bình luận (0)
nguyễn tùng sơn
Xem chi tiết
Pham Van Hung
Xem chi tiết
ღ๖ۣۜLinh
19 tháng 3 2020 lúc 9:59

Ta có \(\left(a-1\right)^2\left(a^2+a+1\right)\ge0\)\(\Leftrightarrow\left(a^2-2a+1\right)\left(a^2+a+1\right)\ge0\)

\(\Leftrightarrow a^4-a^3-a+1\ge0\)

\(\Leftrightarrow a^4-a^3+1\ge a\)

\(\Leftrightarrow a^4-a^3+ab+2\ge a+ab+1\)

\(\Rightarrow\frac{1}{\sqrt{a^4-a^3+ab+2}}\le\frac{1}{\sqrt{ab+a+1}}\)

Tương tự \(\frac{1}{\sqrt{b^4-b^3+bc+2}}\le\frac{1}{\sqrt{bc+b+1}}\)

             \(\frac{1}{\sqrt{c^4-c^3+ca+2}}\le\frac{1}{\sqrt{ca+c+1}}\)

Cộng từng vế các bđt trên ta được

\(VT\le\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\)

Áp dụng bđt Bunhiacopski ta có

\(VT\le\sqrt{3\left(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\right)}\)\(=\sqrt{3\left(\frac{1}{ab+a+1}+\frac{a}{abc+ab+a}+\frac{ab}{a^2bc+abc+ab}\right)}=\sqrt{3}\)

Dấu "=" xảy ra khi a=b=c=1

Bình luận (0)
 Khách vãng lai đã xóa
Cao Nguyen Ngoc
19 tháng 3 2020 lúc 16:15

Đoán xem

Bình luận (0)
 Khách vãng lai đã xóa
Trần Hoàng Thế Sang
19 tháng 3 2020 lúc 17:40

doan bua di :))

Bình luận (0)
 Khách vãng lai đã xóa