Cho tam giác ABC có AC=3cm, HC=1.8cm và đường cao AH
A) Tính AB, HB, AH
B) Trên tia đối của AC lấy điểm E bất kì, gọi K là hình chiếu của A trên BE.CM: BH.BC=BK.BE
cho tam giác abc nhọn (ab<ac). kẻ đường cao ah của tam giác abc. trên hc lấy điểm e sao cho he=hb. gọi i là trung điểm của ac. trên tia đối của tia ie lấy điểm f sao cho if=ie a, chứng minh tam giác ahb = tam giác ahe b, chứng minh à vuông góc với ah c,so sánh cf và ah
a: Xét ΔAHB vuông tại H và ΔAHE vuông tại H có
AH chung
HB=HE
=>ΔAHB=ΔAHE
b: Xét tứ giác AECF có
I là trung điểm chung của AC và EF
=>AECF là hình bình hành
=>AF//EC
=>AF vuông góc AH
c: AECF là hình bình hành
=>CF=AE>HA
cho tam giác ABC vuông tại A, đường cao AH. Gọi D là điểm đối xứng với A qua điểm B. Trên tia đối của tia HA lấy điểm E sao cho HE=2HA. Gọi I là hình chiếu của D trên HE
a) Tính AB, AC, HC, biết AH=4cm, HB=3cm
b) Tính tan góc IED, tan góc HCE
b) Chứng minh góc IED= góc HCE
d) Chứng minh DE ⊥ EC
a) Py-ta-go \(\Delta ABH\), ta có : \(AB^2=AH^2+BH^2=25\Rightarrow AB=5\)
\(AH^2=BH.HC\Rightarrow HC=\frac{AH^2}{BH}=\frac{16}{3}\)
\(AB.AC=AH.BC\)hay \(5.AC=4.\left(3+\frac{16}{3}\right)\Rightarrow AC=\frac{20}{3}\)
b) HB // DI ( cùng vuông góc AI )
\(\Rightarrow\frac{BH}{DI}=\frac{AB}{AD}=\frac{1}{2}\Rightarrow DI=2BH=6\)
\(\frac{AH}{HI}=\frac{AB}{BD}=1\)kết hợp với AH = 2HE \(\Rightarrow AH=HI=IE=4\)
\(\tan\widehat{IED}=\frac{DI}{IE}=\frac{6}{4}=\frac{3}{2}\)
\(\tan\widehat{HCE}=\frac{HE}{HC}=\frac{8}{\frac{16}{3}}=\frac{3}{2}\)
c) theo câu b, \(\Rightarrow\tan\widehat{IED}=\tan\widehat{HCE}=\frac{3}{2}\)\(\Rightarrow\widehat{IED}=\widehat{HCE}\)
d) \(\widehat{HCE}+\widehat{HEC}=90^o\Rightarrow\widehat{IED}+\widehat{HEC}=90^o\Rightarrow\widehat{DEC}=90^o\Rightarrow DE\perp EC\)
Cho tam giác ABC vuông tại A có AH là đường cao. Trên tia đối của tia AC lấy điểm E bất kỳ. Gọi K là hình chiếu của A trên BE. Chứng minh góc BKH = góc BCA.
Cho tam giác ABC vuông tại A có góc B=60 độ đường cao AH trên tia đối của HB lấy điểm M sao cho HM=HB CMR HB<HC tam giác AHB=AHM từ đó suy ra tam giác ABM đều gọi N là trung điểm của AC và O là giao điểm của AM và BN giả sử AB=4 tính độ dài AO
a: góc C=90-60=30 độ<góc B
=>AB<AC
=>HB<HC
b: Xet ΔAHB vuông tại H và ΔAHM vuông tại H có
AH chung
HB=HM
=>ΔAHB=ΔAHM
=>AB=AM
mà góc B=60 độ
nên ΔAMB đều
tam giác ABC vuông tại A có AB>AC đường cao AH, E và F theo thứ tự là hình chiếu vuông góc của H trên AB, AC. EF cắt AH tại O
a) chứng minh AB2=BH.BC và EF.BC= AB.AC
b) Gọi I, K lần lượt là trung điểm của HC, HB. Chứng minh
c) EF cắt BC tại T. Chứng minh TF.TE=TC.TB
Cho tam giác ABC vuông tại A, đường cao AH, biết BC=8cm, AB=4cm.
a) Giải tam giác vuông ABC
b) Tính AH,BH,HC
c) Trên cạnh AC lấy điểm K (K khác A, K khác C). Gọi D là hình chiếu của A trên BK. Chứng minh BD.BK=BH.BC
cho tam giác ABC vuông tại A đường cao AH . Gọi D là điểm đối xứng với A qua điểm B . Trên tia đối của tia HA lấy điểm E sao cho HE = 2HA . Gọi I là hình chiếu của D trên HE
a) tính AB , AC , HC biết AH= 4cm , HB= 3cm
b) tính tan góc IED . tan góc HCE
c) chứng minh góc IED= góc HCE
d) chứng minh DE vuông góc EC
cho tam giác ABC vuông tại A(AB<AC), đường cao AH. Gọi E và F là hình chiếu của H trên trên AB và AC; O là trung điểm của BC và AO cắt EF tại I.
b) Tính AI/HB +AI/HC
Cho tam giác ABC vuông tại A, đường cao AH = 4cm, HB = 3cm.
1. Tính độ dài của AB, AC, HC.
2. Gọi D là điểm đối xứng của A qua B, trên tia đối của tia Ha lấy điểm E sao cho HE = 2HA. Gọi I là hình chiếu của D trên HE. Chứng minh I là trung điểm của HE. Tính giá trị của biểu thức: P = 2tan góc IED – 3 tan góc ECH.
3. Chứng minh CE vuông góc với ED.