Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Moon
Xem chi tiết
Đỗ Thanh Hải
10 tháng 3 2021 lúc 19:17

Có thể làm như sau

Ta thấy \(\dfrac{1}{51}< \dfrac{1}{50}\)

\(\dfrac{1}{52}< \dfrac{1}{50}\)

.......

\(\dfrac{1}{100}< \dfrac{1}{50}\)

=> A = \(\dfrac{1}{50}+\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}< \dfrac{1}{50}.50=1\)

Lại có

\(\dfrac{1}{51}>\dfrac{1}{100}\)

\(\dfrac{1}{52}>\dfrac{1}{100}\)

.......

\(\dfrac{1}{99}>\dfrac{1}{100}\)

=> A = \(\dfrac{1}{51}+\dfrac{1}{52}+\dfrac{1}{53}+...+\dfrac{1}{100}>\dfrac{1}{100}.50=\dfrac{1}{2}\)

=> \(\dfrac{1}{2}< A< 1\)

Vậy A không phải số tự nhiên

Lục Tiểu Ly
Xem chi tiết
Nguyễn Thị Bá Đạo
Xem chi tiết
Nguyễn Thị Bá Đạo
Xem chi tiết
Ruby
Xem chi tiết
Komorebi
1 tháng 4 2018 lúc 15:55

Xét mẫu số : \(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(=\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{99}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{100}\right)\)

\(=\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{99}\right)+\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{100}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{100}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)\)(cộng 2 cái ngoặc đầu tiên và lấy 2 nhân với ngoặc thứ 3 thì đc kết quả như này)

\(=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{99}+\dfrac{1}{100}-1-\dfrac{1}{2}-\dfrac{1}{3}-...-\dfrac{1}{50}\)

=\(\dfrac{1}{51}+\dfrac{1}{52}+\dfrac{1}{53}+...+\dfrac{1}{100}\)

Vậy thay kết quả của mẫu vừa tính đc vào E, ta có :

\(E=\dfrac{\dfrac{1}{51}+\dfrac{1}{52}+\dfrac{1}{53}+...+\dfrac{1}{100}}{\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}}=\) \(\dfrac{\dfrac{1}{51}+\dfrac{1}{52}+\dfrac{1}{53}+...+\dfrac{1}{100}}{\dfrac{1}{51}+\dfrac{1}{52}+\dfrac{1}{53}+...+\dfrac{1}{100}}=1\)

Hà My Lê Phan
Xem chi tiết
TXT Channel Funfun
12 tháng 5 2018 lúc 21:17

\(A=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(A=\left(\dfrac{1}{1}+\dfrac{1}{2}+...+\dfrac{1}{100}\right)-2\cdot\dfrac{1}{2}-2\cdot\dfrac{1}{4}-...-2\cdot\dfrac{1}{100}\)

\(A=\left(\dfrac{1}{1}+\dfrac{1}{2}+...+\dfrac{1}{100}\right)-\dfrac{1}{1}-\dfrac{1}{2}-...-\dfrac{1}{50}\)

\(A=\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}=B\)

\(\Rightarrow A=B\)

Kim Ngưu cute
13 tháng 5 2018 lúc 20:59

tớ giải chi tiết hơn nhá:

A=\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

A=(\(\dfrac{1}{1}+\dfrac{1}{3}+...+\dfrac{1}{99}-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)\)

A=\(\left(\dfrac{1}{1}+\dfrac{1}{3}+...+\dfrac{1}{99}\right)+\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)\)

A=\(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}=B\)

Vậy A=B

Nguyễn Ngọc Gia Hân
Xem chi tiết
Nguyễn Thị Thảo
18 tháng 3 2017 lúc 19:27

Ta thấy:

\(\dfrac{1}{51}< \dfrac{1}{50}\)

\(\dfrac{1}{52}< \dfrac{1}{50}\)

...

\(\dfrac{1}{100}< \dfrac{1}{50}\)

\(\Rightarrow\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}< \dfrac{1}{50}.50=1\)

\(\Rightarrow\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}< 1\left(1\right)\)

Lại có:

\(\dfrac{1}{51}>\dfrac{1}{100}\)

\(\dfrac{1}{52}>\dfrac{1}{100}\)

...

\(\dfrac{1}{100}=\dfrac{1}{100}\)

\(\Rightarrow\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}>\dfrac{1}{100}.50=\dfrac{1}{2}\)

\(\Rightarrow\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}>\dfrac{1}{2}\left(2\right)\)

Từ (1),(2)\(\Rightarrow\)\(\dfrac{1}{2}< \dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}< 1\)

Đỗ Hàn Thục Nhi
Xem chi tiết
Duy Khánh
14 tháng 3 2018 lúc 11:18

undefined

Trần Thị Hoàn
Xem chi tiết
Tài Nguyễn Tuấn
20 tháng 6 2017 lúc 20:57

a) $A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}$

$=>A=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}$

$=>A=(1+\dfrac{1}{3}+...+\dfrac{1}{99})-(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100})$

$=>A=(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{99}+\dfrac{1}{100})-(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}.2)$

$=>A=(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100})-(1+\dfrac{1}{2}+...+\dfrac{1}{50})$

$=>A=\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}$

b) Ta có : $A=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}$

$=>A=(1-\dfrac{1}{2}+\dfrac{1}{3})-(\dfrac{1}{4}-\dfrac{1}{5})-...-(\dfrac{1}{98}-\dfrac{1}{99})-\dfrac{1}{100}$

$=>A<1-\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}$