Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sóii Trắngg
Xem chi tiết
Phong Thần
21 tháng 4 2021 lúc 9:35

Hỏi đáp Toán

Thân Thị Tuyết
Xem chi tiết
Phạm Nguyễn Tất Đạt
16 tháng 5 2016 lúc 17:51

10A=10*\(\frac{10^{2006}+1}{10^{2007}+1}\)                             10B=10*\(\frac{10^{2007}+1}{10^{2008}+1}\)                           

10A=\(\frac{10^{2007}+1+9}{10^{2007}+1}\)                                10B=\(\frac{10^{2008}+1+9}{10^{2008}+1}\)

10A=1+\(\frac{9}{10^{2007}+1}\)                                10B=1+\(\frac{9}{10^{2008}+1}\)

Vì \(\frac{9}{10^{2007}+1}\)>\(\frac{9}{10^{2008}+1}\)=>1+\(\frac{9}{10^{2007}+1}\)>1+\(\frac{9}{10^{2008}+1}\)

Nên 10A>10B=>A>B

Hoàng Mỹ Linh
16 tháng 5 2016 lúc 20:12

Ta có: \(A=\frac{10^{2006}+1}{10^{2007}+1}\)

\(=>10A=\frac{10^{2007}+10}{10^{2007}+1}=\frac{10^{2007}+1+9}{10^{2007}+1}=\frac{10^{2007}+1}{10^{2007}+1}+\frac{9}{10^{2007}+1}=1+\frac{9}{10^{2007}+1}\)

            \(B=\frac{10^{2007}+1}{10^{2008}+1}\)

\(=>10B=\frac{10^{2008}+10}{10^{2008}+1}=\frac{10^{2008}+1+9}{10^{2008}+1}=\frac{10^{2008}+1}{10^{2008}+1}+\frac{9}{10^{2008}+1}=1+\frac{9}{10^{2008}+1}\)

Vì \(10^{2007}+1< 10^{2008}+1=>\frac{9}{10^{2007}+1}>\frac{9}{10^{2008}+1}=>1+\frac{9}{10^{2007}+1}>1+\frac{9}{10^{2008}+1}=>10A>10B=>A>B\)

Đặng Quỳnh Ngân
16 tháng 5 2016 lúc 20:31

Cho B = \(\frac{10^{2007}+1}{10^{2008}+1}\)

Rõ ràng B < 1 nên theo B, nếu \(\frac{a}{b}< 1\) thì \(\frac{a+n}{b+n}>\frac{a}{b}\) => B < \(\frac{\left(10^{2007}+1\right)+9}{\left(10^{2008}+1\right)+9}=\frac{10^{2007}+10}{10^{2008}+10}\)

Do đó B < \(\frac{10^{2007}+10}{10^{2008}+10}=\frac{10\left(10^{2006}+1\right)}{10\left(10^{2007}+1\right)}=\frac{10^{2006}+1}{10^{2007}+1}\)

=> A > B

Nguyễn Vũ Thành Hưng
Xem chi tiết
Lưu Phương Thảo
1 tháng 1 2016 lúc 14:22

tick đi mình giải cho,dễ ẹc à.

thanh tam tran
Xem chi tiết
Phạm Vân Nhi
Xem chi tiết
kaitovskudo
7 tháng 8 2016 lúc 13:38

Ta có: A=\(\frac{10^{2006}+1}{10^{2007}+1}\)

=>10A=\(\frac{10\left(10^{2006}+1\right)}{10^{2007}+1}=\frac{10^{2007}+10}{10^{2007}+1}=1+\frac{9}{10^{2007}+1}\)             

Ta có: B=\(\frac{10^{2007}+1}{10^{2008}+1}\)

=>10B=\(\frac{10\left(10^{2007}+1\right)}{10^{2008}+1}=\frac{10^{2008}+10}{10^{2008}+1}=1+\frac{9}{10^{2008}+1}\)  

Mà \(\frac{9}{10^{2007}+1}>\frac{9}{10^{2008}+1}\)        (do 102007+1<102008+1)

=>\(1+\frac{9}{10^{2007}+1}>1+\frac{9}{10^{2008}+1}\)

=>10A>10B

=>A>B

soyeon_Tiểu bàng giải
7 tháng 8 2016 lúc 13:34

Áp dụng a/b < 1 => a/b < a+m/b+m (a,b,m thuộc N*)

=> \(B=\frac{10^{2007}+1}{10^{2008}+1}< \frac{10^{2007}+1+9}{10^{2008}+1+9}\)

=> \(B< \frac{10^{2007}+10}{10^{2008}+10}\)

=> \(B< \frac{10.\left(10^{2006}+1\right)}{10.\left(10^{2007}+1\right)}\)

=> \(B< \frac{10^{2006}+1}{10^{2007}+1}=A\)

Nguyễn Lê Minh
Xem chi tiết
ミŇɦư Ἧσς ηgu lý ミ
13 tháng 3 2020 lúc 9:51

a<b bn nha

Khách vãng lai đã xóa
Nguyen Gia Trieu
Xem chi tiết
soyeon_Tiểu bàng giải
10 tháng 9 2016 lúc 18:29

Áp dụng \(\frac{a}{b}< 1\Leftrightarrow\frac{a}{b}< \frac{a+m}{b+m}\)(\(a;b;m\in\)N*)

Ta có: 

\(B=\frac{10^{2007}+1}{10^{2008}+1}< \frac{10^{2007}+1+9}{10^{2008}+1+9}\)

\(B< \frac{10^{2007}+10}{10^{2008}+10}\)

\(B< \frac{10.\left(10^{2006}+1\right)}{10.\left(10^{2007}+1\right)}\)

\(B< \frac{10^{2006}+1}{10^{2007}+1}=A\)

=> \(B< A\)

Nguyen Gia Trieu
10 tháng 9 2016 lúc 18:31

thank you

Lê Thị Mỹ Hằng
Xem chi tiết
Pham Khanh Xuan
Xem chi tiết