Tìm X là số hữu tỉ, biết:
/2x-5/=5-2x
Giải đầy đủ 1 like
TÌM SỐ HỮU TỈ X SAO CHO X2 + 5 VÀ X2 - 5 ĐỀU LÀ BÌNH PHƯƠNG CỦA CÁC SỐ HỮU TỈ:
1 NÊU CÁCH GIẢI
2 NÊU ĐÁP ÁN
3 VIẾT ĐẦY ĐỦ
Nếu là ♦ thì đọc tiếp, lý do tôi nói sau. Trước tiên lý thuyết
----------
Số chính phương chẵn là bình phương của số chẵn nên có dạng 4k. Số chính phương lẻ có dạng 4k + 1: (2n + 1)² = 4n(n + 1) + 1 ♂
Từ ♂ => số chính phương lẻ có dạng 8k + 1 do 1 trong 2 số n vả (n + 1) chẵn.
Bình phương của số chia hết cho 3 thì chia hết cho 3. Bình phương của số không chia hết cho 3 thì chia cho 3 dư 1: (3n +- 1)² = 3(3n² +- 2n) + 1
--------
Ta tìm số hữu tỷ x = n / m với (n, m) = 1, tức dưới dạng phân số tối giản
=> x² - 5 = (n² - 5m²) / m² = (k / l)², với (k, l) = 1
=> (n² - 5m²) * l² = m² * k²
Nếu n² - 5m² = 1 thì dĩ nhiên là số chính phương. Nếu n² - 5m² > 1 => mỗi ước nguyên tố p của n² - 5m² trong khai triển n² - 5m² thành tích các thừa số nguyên tố phải được nâng lên lũy thừa chẵn vì ngược lại thì VT chứa p với lũy thừa lẻ trong khi VP nếu có ước nguyên tố p thì nó được nâng lên lũy thừa chẵn nên không thể có đẳng thức. Vậy n² - 5m² là số chính phương. Tương tự n² + 5m² là số chính phương.
n và m không thể cùng chẵn vì phân số là tối giản. Cũng không thể cùng lẻ vì lúc đó n² + 5m² = 4m² + n² + m² là số có dạng 4k + 2 nên không thể là số chính phương. Vậy n và m không cùng chẵn lẻ. n không chẵn vì lúc đó m lẻ và n² - 5m² = n² - 8m² + 3m² có dạng 4k + 3. Vậy n lẻ và m chẵn. Nếu m không chia hết cho 4 tức có dạng 4k + 2 thì 5m² có dạng 8k + 4 và n² có dạng 8k + 1 nên số lẻ n² + 5m² có dạng 8k + 5 nên không thể là số chính phương. Vậy m chia hết cho 4
n và m tất nhiên không cùng chia hết cho 3 vì phân số tối giản. Nếu n chia hết cho 3 thì m không chia hết cho 3 và số n² + 5m² = n² + 3m² + 2m² chia cho 3 dư 2 nên không thể là số chính phương. Vậy m chia hết cho 3 và n không chia hết cho 3. Do (3, 4) = 1 => m chia hết cho 12 = 3*4 => m = 12*p, với p tự nhiên ≥ 1
Với p = 1 => m = 12 => n² - 5*12² = n² - 720 ≥ 0 => n ≥ 27
=> n = 29, 31, 35, 37, 41, ... (các số lẻ ≥ 27 không chia hết cho 3)
Ta loại n = 35 vì lúc đó n² - 5m² chia hết cho 5 nhưng không chia hết cho 25 do m không chia hết cho 5 nên không thể là số chính phương. Thử 4 số còn lại ta thấy n = 41 thỏa mãn:
41² - 5*12² = 31², 41² + 5*12² = 49²
(41 / 12)² - 5 = (31 / 12)², (41 / 12)² + 5 = (49 / 12)² tức x = 41 / 12 thỏa mãn
Do không cm được là phân số tối giản 41 / 12 là số hữu tỷ duy nhất thỏa mãn mà cũng không cm được là có nhiều phân số tối giản khác nhau thỏa mãn (do không có ý tưởng) nên đây là lý do tôi đã nêu.
Cho x = a-5 / 2012 . Xác định a để
a) x là số hữu tỉ dương
b) x là số hữu tỉ âm
c) x không phải là số hữu tỉ dương cũng không phải là số hữu tỉ âm
Mấy bạn giải đầy đủ hộ mình với ạ?! Cảm ơn!!!
C1: vì s các số 0,6; -1,25; 1/1/3 là các số hữu tỉ
C2: số nguyên a có phải số hữu tỉ k, vì s
C3: biểu diễn các số nguyên: -1;1;2 trên trục số
C4: so sánh 2 ps -2/3;4/-5
C5: trong các số hữu tỉ sau số nào là số hữu tỉ âm, số nào là số hữu tỉ dương, số nào k là số hữu tỉ dương cx k phải là số hữu tỉ âm?
-3/7;2/3;1/-5;-4;0/-2;-3/-5.
ai tl đầy đủ và đúng mk tick cho
Bài 1: Tìm số hữu tỉ x biết:
a, ( 2x - 1 )4 = 81 b, ( x - 1 )5 = -32
c, ( 2x - 1 )6 = ( 2x - 1 )8
Bài 2: Tìm các số tự nhiên x, y biết rằng:
a, 2x + 1 . 3y = 12x. b, 10x : 5y = 20y
c, 2x = 4y - 1 và 27y = 3x + 8
Bài 2:
a: Ta có: \(2^{x+1}\cdot3^y=12^x\)
\(\Leftrightarrow2^{x+1}\cdot3^y=2^{2x}\cdot3^x\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1=2x\\x=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
Tìm x là số hữu tỉ biết\(\frac{13}{2x^2+5}\)nhận giá trị nguyên
Để \(\frac{13}{2x^2+5}\)nhận giá trị nguyên thì
Vì \(x^2\ge0\Rightarrow2x^2\ge0\Rightarrow2x^2+5\ge5\)
\(\Rightarrow2x^2+5=13\)
\(\Rightarrow2x^2=8\)
\(\Rightarrow x^2=4\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
tìm số nguyên x để các số sau là số hữu tỉ
a, x/7 b, 5/x c, -5/2x
a, \(\dfrac{x}{7}\) \(\in\) Q ⇔ \(x\in z\)
b, \(\dfrac{5}{x}\) \(\in\) Q ⇔ \(x\) \(\ne\) 0; \(x\) \(\in\) Z
c, - \(\dfrac{5}{2x}\) \(\in\) Q ⇔ \(x\) \(\ne\) 0; \(x\in Z\)
a) Tập hợp số nguyên chia hết cho 7 là
\(\Rightarrow x\in A=\left\{\pm7;\pm14;\pm21;...\right\}\)
\(\Rightarrow A=\left\{x\inℕ|x=\pm7k;k\inℤ\right\}\)
Vậy để \(\dfrac{x}{7}\in Q\)
\(\Rightarrow x\in A\)
b) \(\dfrac{5}{x}\inℚ\)
\(\Rightarrow x\in\left\{\pm1;\pm5\right\}\)
c) \(-\dfrac{5}{2x}\inℚ\)
\(\Rightarrow2x\in\left\{\pm1;\pm5\right\}\)
\(\Rightarrow x\in\left\{\pm\dfrac{1}{2};\pm\dfrac{5}{2}\right\}\)
\(\Rightarrow x\in\varnothing\)
Tìm số hữu tỉ x biết x2 + 5 và x2 - 5 đều là bình phương của các số hữu tỉ.
Đặt \(\hept{\begin{cases}x^2+5=a^2\\x^2-5=b^2\end{cases}\Rightarrow x^2+5}-x^2+5=a^2-b^2\)
\(\Rightarrow a^2-b^2=10\)
\(\Rightarrow\left(a-b\right)\left(a+b\right)=10\)
Vì \(\hept{\orbr{\begin{cases}\left(a-b\right)\left(a+b\right)⋮̸2\\\left(a-b\right)\left(a+b\right)⋮4\end{cases}}}\)(do a-b và a+b luôn có cùng số dư khi chia cho 2 )
Vậy không tìm đượcx thỏa mãn x^2+5 và x^2-5 là bình phương của các số hữu tỉ
Vì x2 + 5 và x2 - 5 đều là bình phương của các số hữu tỉ nên t x2 + 5 = a2 ;x2 - 5 = b2
Lập tích (x2 + 5).(x2 - 5 ) = x2 - 52 = a2 .b2
1 tìm các số hữu tỉ x,y thỏa mãn 3x=2y và x+y=-15
2 tìm các số hữu tỉ x,y biết rằng
a) x+y-z=20 và \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)
b)\(\dfrac{x}{11}=\dfrac{y}{12};\dfrac{y}{3}=\dfrac{z}{7}\) và 2x-y+z=152
3) chia số 552 thành ba phần tỉ lệ nghịch 3;4;5 tính giá trị từng phần?
chia số 315 thành 3 phần tỉ lệ nghịch với 3:4:6. tính giá trị mỗi phần?
4 cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) chứng minh rằng
a)\(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
b)\(\dfrac{5a+2c}{5a+2d}=\dfrac{a-4c}{b-4d}\)
c\(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
Các bạn giúp mình với nhé mình dang cần gấp.mình xin cảm ơn
Bài 1:
Ta có: \(3x=2y\)
nên \(\dfrac{x}{2}=\dfrac{y}{3}\)
mà x+y=-15
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{-15}{5}=-3\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{2}=-3\\\dfrac{y}{3}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-9\end{matrix}\right.\)
Vậy: (x,y)=(-6;-9)
Bài 2:
a) Ta có: \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)
mà x+y-z=20
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y-z}{4+3-5}=\dfrac{20}{2}=10\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{4}=10\\\dfrac{y}{3}=10\\\dfrac{z}{5}=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40\\y=30\\z=50\end{matrix}\right.\)
Vậy: (x,y,z)=(40;30;50)
Bài 2:
b) Ta có: \(\dfrac{y}{3}=\dfrac{z}{7}\)
nên \(\dfrac{y}{12}=\dfrac{z}{28}\)
mà \(\dfrac{x}{11}=\dfrac{y}{12}\)
nên \(\dfrac{x}{11}=\dfrac{y}{12}=\dfrac{z}{28}\)
hay \(\dfrac{2x}{22}=\dfrac{y}{12}=\dfrac{z}{28}\)
mà 2x-y+z=152
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x}{22}=\dfrac{y}{12}=\dfrac{z}{28}=\dfrac{2x-y+z}{22-12+28}=\dfrac{152}{38}=4\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{11}=4\\\dfrac{y}{12}=4\\\dfrac{z}{28}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=44\\y=48\\z=112\end{matrix}\right.\)
Vậy: (x,y,z)=(44;48;112)
Tìm tất cả các số hữu tỉ x tm \(\frac{5}{2x^2+1}\)là số nguyên
Để \(\frac{5}{2x^2+1}\) là số nguyên thì \(5⋮\left(2x^2+1\right)\) \(\Rightarrow\) \(\left(2x^2+1\right)\inƯ\left(5\right)\)
Mà \(Ư\left(5\right)\left\{1;-1;5;-5\right\}\)
Suy ra :
\(2x^2+1\) | \(1\) | \(-1\) | \(5\) | \(-5\) |
\(x\) | \(0\) | \(\varnothing\) | \(\sqrt{2}\) | \(\varnothing\) |
Vì \(x\inℚ\) ( x là số hữu tỉ ) nên \(x=0\)
Vậy \(x=0\)