Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Thúy Ngân
Xem chi tiết
Lê Thị Thục Hiền
27 tháng 5 2021 lúc 10:52

\(M=5x^2+y^2-2x+2y+2xy+2004\)

\(=\left(x^2+2x+1\right)+2y\left(x+1\right)+y^2+4x^2-4x+1+2002\)

\(=\left(x+1\right)^2+2y\left(x+1\right)+y^2+\left(2x-1\right)^2+2002\)

\(=\left(x+1+y\right)^2+\left(2x-1\right)^2+2003\ge2002\) với mọi x,y

=> \(M_{min}=2002\Leftrightarrow\left\{{}\begin{matrix}x+y+1=0\\2x-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy \(M_{min}=2002\)

MaiLinh
Xem chi tiết
Nguyễn Hoàng Minh
14 tháng 9 2021 lúc 22:16

\(x^2+2xy+6x+6y+2y^2+8=0\\ \Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+y^2=-8\)

Ta có \(y^2\ge0\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)\le-8\)

\(\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+9\le1\\ \Leftrightarrow\left(x+y+3\right)^2\le1\\ \Leftrightarrow\left|x+y+3\right|\le1\\ \Leftrightarrow-1\le x+y+3\le1\\ \Leftrightarrow2012\le B\le2014\)

\(B_{min}=2012\Leftrightarrow\left\{{}\begin{matrix}x+y+2016=2012\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=0\end{matrix}\right.\)

\(B_{max}=2014\Leftrightarrow\left\{{}\begin{matrix}x+y+2016=2014\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=0\end{matrix}\right.\)

Nguyễn Nam
Xem chi tiết
Bùi Hoàng Linh Chi
26 tháng 7 2017 lúc 14:22

CMR B \(\ge\)một số nào đó

Đinh Đức Hùng
26 tháng 7 2017 lúc 14:29

\(B=2x^2+2xy+y^2-2x+2y+2016\)

\(=\left(x^2+2xy+y^2+2x+2y+1\right)+\left(x^2-4x+4\right)+2011\)

\(=\left[\left(x+y\right)^2+2\left(x+y\right)+1\right]+\left(x-2\right)^2+2011\)

\(=\left(x+y+1\right)^2+\left(x-2\right)^2+2011\ge2011\forall x;y\)có GTNN là 2011

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+y+1\right)^2=0\\\left(x-2\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=-3\end{cases}}}\)

Vậy \(B_{min}=2011\) tại \(x=2;y=-3\)

Bui Quang Thang
26 tháng 7 2017 lúc 14:37

thang ngu

phan thuy nga
Xem chi tiết
Đặng Quỳnh Ngân
27 tháng 9 2016 lúc 17:20

a) = 9(x2 - 2.x/2.9 + 1/324) - 9/324 +5

GTNN A = 4,97

b) = (2x +y)2 + y2 + 2018

GTNN B = 2018 khi x=0;y=0

c) = -4(x2 - 2.3x/ 4.2 + 9/16) +9/16 +10

GTLN C = 169/16

d) = -(x-y)2 - (2x +1) +1 + 2016

GTLN D = 2017

(trg bn cho bài khó dữ z, làm hại cả não tui)

phan thuy nga
29 tháng 9 2016 lúc 14:39

cảm ơn nhiều lắm đấy

Bùi Hải Đoàn
Xem chi tiết
alibaba nguyễn
12 tháng 1 2017 lúc 8:43

\(A=2x^2+y^2+2xy-6x-2y+10\)

\(=\left(\left(x^2+2xy+y^2\right)-2\left(x+y\right)+1\right)+\left(x^2-4x+4\right)+5\)

\(=\left(x+y-1\right)^2+\left(x-2\right)^2+5\ge5\)

Vậy GTNN là A = 5 khi \(\hept{\begin{cases}x=2\\y=-1\end{cases}}\)

Đặng Nguyễn Khánh Uyên
12 tháng 1 2017 lúc 7:26

GTNN=7

Bùi Hải Đoàn
13 tháng 1 2017 lúc 7:54

Cảm ơn bác Alibaba nhiều nhé. Chúc bác luôn hạ gục được 40 tên cướp!

NgVH
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 4 2023 lúc 18:33

\(A=\left(x^2-2xy+y^2\right)+2\left(x-y\right)+1+x^2+6x+9+1978\)

\(=\left(x-y\right)^2+2\left(x-y\right)+1+\left(x+3\right)^2+1978\)

\(=\left(x-y+1\right)^2+\left(x+3\right)^2+1978\ge1978\)

\(A_{min}=1978\) khi \(\left\{{}\begin{matrix}x=-3\\y=-2\end{matrix}\right.\)

Vũ Anh Quân
Xem chi tiết
Vũ Nam khánh
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 8 2021 lúc 16:46

\(D=\left(x^2+z^2-2xz\right)+\left(x^2+y^2-2xy+2x-2y+1\right)+3\)

\(D=\left(x-z\right)^2+\left(x-y+1\right)^2+3\ge3\)

\(D_{min}=3\) khi \(\left\{{}\begin{matrix}x=z\\x=y-1\end{matrix}\right.\)

VUX NA
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 8 2021 lúc 15:40

\(S=\left(x^2+y^2+1+2xy+2x+2y\right)+\left(y^2-4y+4\right)+2021\)

\(S=\left(x+y+1\right)^2+\left(y-2\right)^2+2021\ge2021\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(-3;2\right)\)