\(M=y^2+2y\left(x+1\right)+\left(x+1\right)^2-\left(x+1\right)^2+5x^2-2x+2016\)
\(M=\left(y+x+1\right)^2+4x^2-4x+1+2014\)
\(M=\left(y+x+1\right)^2+\left(2x-1\right)^2+2014\)
Dễ thấy \(\left(y+x+1\right)^2\ge0\forall x;y\)và \(\left(2x-1\right)^2\ge0\forall x\)
Do đó \(M\ge2014\forall x;y\)=> GTNN của M = 2014 khi \(\hept{\begin{cases}2x-1=0\\y+x+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-\frac{3}{2}\end{cases}}}\).