a^6+a^4+a^2b^2+b^4-b^6
phân tích đa thức trên thành nhân tử
A) a^6+a^4+a^2b^2+b^4-b^6
phân tích đa thức thành nhân tử
Phân tích các đa thức sau thành nhân tử
a) a^6+a^4+a^2b^2+b^4-b^6
b) x^3+3xy+y^3-1
a/ \(\left(a^2-b^2+1\right)\left(a^2-ab+b^2\right)\left(a^2+ab+b^2\right)\)
b/ \(\left(x+y-1\right)\left(y^2-xy+y+x^2+x+1\right)\)
2x^3-5x-6
phân tích đa thức trên thành nhân tử
\(2x^3-5x-6\)
\(=2x^3-4x^2+4x^2-8x+3x-6\)
\(=2x^2\left(x-2\right)+4x\left(x-2\right)+3\left(x-2\right)\)
\(=\left(x-2\right)\left(2x^2+4x+3\right)\)
#\(Toru\)
phân tích đa thức thành nhân tử:
1.(1/4)a^4-a^2b+b^2
2. 2a^2+2b^2-a^2c+c-b^2c-2
1.=[(1/2)a^2)^2-2.(1/2)a^2b+b^2
=[(1/2)a^2-b]^2
2.=2a^2+2b^2-2-a^2c+c-b^2c
=2(a^2+b^2-a)-c(a^2+b^2-1)
=(2-c)(a^2+b^2-1)
Phân tích đa thức thành nhân tử:2a^2b^2+2a^2c^2+2b^2c^2-a^4-b^4-c^4
2a2b2+2b2c2+2a2c2-a4-b4-c4
=4a2c2-(a4+b4+c4-2a2b2+2a2c2-2b2c2)
=4a2c2-(a2-b2+c2)2
=(2ac+a2-b2+c2)(2ac-a2+b2-c2)
=[(a+c)2-b2][b2-(a-c)2]
=(a+b+c)(a+c-b)(b+a-c)(b-a+c)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Phân tích đa thức thành nhân tử:
a^4+b^4+c^4-2a^2b^2-2b^2c^2-2a^2c^2
a^4+b^4+c^4-2a^2b^2+2b^2c^2-2a^2c^2-4b^2c^2
=(a^2-b^2-c^2)-4b^2c^2
=(a^2-b^2-c^2-2bc)(a^2-b^2-c^2+2bc)
=(a-b-c)(a+b+c)(a-b+c)(a+b-c)
a4+b4+c4- 2a2b2- 2b2c2- 2c2a2
= (a2-b2-c2)2
\(x^2\)+5x+6
Phân tích đa thức thành nhân tử
\(x^2+5x+6=\left(x^2+2x\right)+\left(3x+6\right)=x\left(x+2\right)+3\left(x+2\right)=\left(x+2\right)\left(x+3\right)\)
Phân tích đa thức thành nhân tử :
a, 3 (x^4+x^2+1)-(x^2+x+1)^2
b, 6x^4+y^4
c, a^6+a^4+a^2b^2+b^4-b^6
d, x^3 +3xy+y^3-1
vại
fdvfdverberrgtrgrgg
phân tích đa thức sau thành nhân tử \(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2a^2c^2\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)