giải phương trình: x^3-9x+3x-3=0
Giải các phương trình sau:
a) x²+4x+3=0
b)x²+3x-2=0
c)-3x²+5x+8=0
d)9x²-6x+1=0
\(b,x^2+3x-2=0\\ \Delta=3^2-4.1.\left(-2\right)=17\\ =>\left[{}\begin{matrix}x_1=\dfrac{-3+\sqrt{17}}{2}\\x_2=\dfrac{-3-\sqrt{17}}{2}\end{matrix}\right.\)
Mấy câu còn lại mình giải rồi
a: =>(x+1)(x+3)=0
=>x=-1 hoặc x=-3
b: Δ=3^2-4*1*(-2)=9+8=17>0
=>Phương trình có hai nghiệm pb là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-3-\sqrt{17}}{2}\\x_2=\dfrac{-3+\sqrt{17}}{2}\end{matrix}\right.\)
c: =>3x^2-5x-8=0
=>3x^2-8x+3x-8=0
=>(3x-8)(x+1)=0
=>x=8/3 hoặc x=-1
d: =>(3x-1)^2=0
=>3x-1=0
=>x=1/3
Giải các phương trình sau:
a \(x^2+3x+4=0\)
b \(3x^3-x+2=0\)
c \(x^4-4x^3-9x^2+8x+4=0\)
d \(x^4+4x^3+6x^2-5x-8=0\)
a: Ta có: \(x^2+3x+4=0\)
\(\text{Δ}=3^2-4\cdot1\cdot4=9-16=-7< 0\)
Do đó: Phương trình vô nghiệm
giải phương trình \(x^3-3x^2+9x-9=0\)
\(\left(x-1\right)^3=x^3-3x^2+3x-1\)
\(\Leftrightarrow y^3+6y-2=0\)(*)
(*) có nghiệm \(y=\sqrt[3]{4}-\sqrt[3]{2}\) do mình nhớ có lần làm cái bài này
Tính Giá trị A= (a^3+6a-2)^2016 với \(a=\sqrt[3]{2}\left(\sqrt[3]{2}-1\right)\)
KL:
\(x=\sqrt[3]{4}-\sqrt[3]{2}+1\)
Giải phương trình
\(x^3-3x^2+9x-9=0\)
(x − 1)3 + 6(x − 1) − 2=0
Tôi chỉ giải được thếy này thôi, đến đây tôi nghĩ bạn cũng đã hiểu.
Giải phương trình :
\(x^4-3x^3-9x^2-27x+81=0\)
Giải phương trình sau : \(x^4-3x^3+2x^2-9x+9=0\)
\(x^4-3x^3+2x^2-9x+9=0\)
\(\Leftrightarrow\left(x^4-2x^3-9x\right)-\left(x^3-2x^2-9\right)=0\)
\(\Leftrightarrow x\left(x^3-2x^2-9\right)-\left(x^3-2x^2-9\right)=0\)
\(\Leftrightarrow\left(x^3-2x^2-9\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[\left(x^3+x^2+3x\right)-\left(3x^2+3x+9\right)\right]\left(x-1\right)=0\)
\(\Leftrightarrow\left[x\left(x^2+x+3\right)-3\left(x^2+x+3\right)\right]\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2+x+3\right)\left(x-3\right)\left(x-1\right)=0\)(1)
Ta thấy \(x^2+x+3=x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+3\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}>0;\forall x\)
\(\Rightarrow\left(1\right)\)xảy ra \(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x-1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
Vậy \(x\in\left\{3;1\right\}\)
\(x^4-3x^3+2x^2-9x+9=0\)
\(\Leftrightarrow\left(x^4+9+6x^2\right)-\left(3x^3+9x\right)-4x^2=0\)
\(\Leftrightarrow\left(x^2+3\right)^2-3x\left(x^2+3\right)-4x^2=0\)
\(\Leftrightarrow\left(x^2+3\right)^2-4x\left(x^2+3\right)+x\left(x^2+3\right)-4x^2=0\)
\(\Leftrightarrow\left(x^2+3\right)\left(x^2+3-4x\right)+x\left(x^2+3-4x\right)=0\)
\(\Leftrightarrow\left(x^2+3-4x\right)\left(x^2+3+x\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\left[\left(x+\frac{1}{2}\right)^2+\frac{11}{4}\right]=0\)
Vì \(\left(x^2+\frac{1}{2}\right)^2+\frac{11}{4}>0\)
\(\Rightarrow\left(x-1\right)\left(x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)
Giải Phương Trình:
x4-2x2-8x-3=0
x3-3x2+9x-9=0
a. Phương trình tương đương với \(\left(x^2-2x-1\right)\left(x^2+2x+3\right)=0\leftrightarrow x=1\pm\sqrt{2}.\)
b. Nhân cả hai vế với 3, phương trình tương đương với \(27-27x+9x^2-x^3=2x^3\leftrightarrow\left(3-x\right)^3=2x^3\leftrightarrow3-x=\sqrt[3]{2}x\leftrightarrow x=\frac{3}{1+\sqrt[3]{2}}\leftrightarrow x=\sqrt[3]{4}-\sqrt[3]{2}+1.\)
x4 = 2x2 +8x + 3
x4 - 2x2 = 8x +3
x4 + 2x2 + 1 = 4x2 +8x +4
(x2 +1)2 = 4(x + 1)2
(x2 - 2x - 1)(x2 + 2x + 3)=0
x=...
a . Giải phương trình :\(x^2+9x+20=2\sqrt{3x+10}\).
b . Giải hệ phương trình : \(\hept{\begin{cases}x^2y^2-2x+y^2=0\\2x^2-4x+3=-y^3\end{cases}}\).
a. ĐKXĐ: \(x\ge-\frac{10}{3}\)
Điều kiện có nghiệm : \(x^2+9x+20\ge0\Leftrightarrow\orbr{\begin{cases}x\ge-4\\x\le-5\end{cases}}\)
Kết hợp ta có điều kiện \(x\ge-\frac{10}{3}.\)
Từ phương trình ta có: \(x^2+9x+18=2\left(\sqrt{3x+10}-1\right)\)
\(\Leftrightarrow\left(x+3\right)\left(x+6\right)=2.\frac{3x+9}{\sqrt{3x+10}+1}\)
\(\Leftrightarrow\left(x+3\right)\left(x+6\right)=\frac{6\left(x+3\right)}{\sqrt{3x+10}+1}\)
\(\Leftrightarrow\left(x+3\right)\left(x+6-\frac{6}{\sqrt{3x+10}+1}\right)=0\)
TH1: x = - 3 (tm)
Th2: \(x+6-\frac{6}{\sqrt{3x+10}+1}=0\)
\(\Leftrightarrow\left(x+6\right)\sqrt{3x+10}+x+6-6=0\)
\(\Leftrightarrow\left(x+6\right)\sqrt{3x+10}+x=0\)
Đặt \(\sqrt{3x+10}=t\Rightarrow x=\frac{t^2-10}{3}\)
Vậy thì \(\left(\frac{t^2-10}{3}+6\right)t+\frac{t^2-10}{3}=0\)
\(\Leftrightarrow\frac{t^3+8t}{3}+\frac{t^2-10}{3}=0\Leftrightarrow t^3+t^2+8t-10=0\Leftrightarrow t=1\Leftrightarrow x=-3\left(tm\right).\)
Vậy pt có 1 nghiệm duy nhất x = - 3.
b. Nhân 2 vào hai vế của phương trình thứ nhất rồi trừ từng vế cho phương trình thứ hai, ta được:
\(2x^2y^2-4x+2y^2-\left(2x^2-4x+y^3+3\right)=0\)
\(\Leftrightarrow2x^2y^2-2x^2-y^3+2y^2-3=0\)
\(\Leftrightarrow2x^2\left(y^2-1\right)-\left(y+1\right)\left(y^2-3y+3\right)=0\)
\(\Leftrightarrow\left(y+1\right)\left(2x^2y-2x^2-y^2+3y-3\right)=0\)
Với y = - 1 ta có \(x^2-2x+1=0\Leftrightarrow x=1.\)
Với \(\left(2x^2+3\right)y-\left(2x^2+3\right)-y^2=0\Leftrightarrow\left(2x^2+3\right)\left(y-1\right)=y^2\)
\(\Rightarrow\frac{y^2}{y-1}-4x=-y^3\Rightarrow x=\frac{y^4-y^3+y^2}{4\left(y-1\right)}\)
Thế vào pt (1) : Vô nghiệm.
Vậy (x; y) = (1; -1)
a) \(2\left(x^2-2x\right)+\sqrt{x^2-2x-3}-9=0\)
b) \(3\sqrt{2+x}-6\sqrt{2-x}+4\sqrt{4-x^2}=10-3x\)
c) Cho phương trình: \(\sqrt{x}+\sqrt{9-x}=\sqrt{-x^2+9x+m}\)
+) Giải phương trình khi m=9
+) Tìm m để phương trình có nghiệm
a, ĐK: \(x\le-1,x\ge3\)
\(pt\Leftrightarrow2\left(x^2-2x-3\right)+\sqrt{x^2-2x-3}-3=0\)
\(\Leftrightarrow\left(2\sqrt{x^2-2x-3}+3\right).\left(\sqrt{x^2-2x-3}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-2x-3}=-\dfrac{3}{2}\left(l\right)\\\sqrt{x^2-2x-3}=1\end{matrix}\right.\)
\(\Leftrightarrow x^2-2x-3=1\)
\(\Leftrightarrow x^2-2x-4=0\)
\(\Leftrightarrow x=1\pm\sqrt{5}\left(tm\right)\)
b, ĐK: \(-2\le x\le2\)
Đặt \(\sqrt{2+x}-2\sqrt{2-x}=t\Rightarrow t^2=10-3x-4\sqrt{4-x^2}\)
Khi đó phương trình tương đương:
\(3t-t^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2+x}-2\sqrt{2-x}=0\\\sqrt{2+x}-2\sqrt{2-x}=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2+x=8-4x\\2+x=17-4x+12\sqrt{2-x}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\left(tm\right)\\5x-15=12\sqrt{2-x}\left(1\right)\end{matrix}\right.\)
Vì \(-2\le x\le2\Rightarrow5x-15< 0\Rightarrow\left(1\right)\) vô nghiệm
Vậy phương trình đã cho có nghiệm \(x=\dfrac{6}{5}\)
c, ĐK: \(0\le x\le9\)
Đặt \(\sqrt{9x-x^2}=t\left(0\le t\le\dfrac{9}{2}\right)\)
\(pt\Leftrightarrow9+2\sqrt{9x-x^2}=-x^2+9x+m\)
\(\Leftrightarrow-\left(-x^2+9x\right)+2\sqrt{9x-x^2}+9=m\)
\(\Leftrightarrow-t^2+2t+9=m\)
Khi \(m=9,pt\Leftrightarrow-t^2+2t=0\Leftrightarrow\left[{}\begin{matrix}t=0\\t=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}9x-x^2=0\\9x-x^2=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=9\left(tm\right)\\x=\dfrac{9\pm\sqrt{65}}{2}\left(tm\right)\end{matrix}\right.\)
Phương trình đã cho có nghiệm khi phương trình \(m=f\left(t\right)=-t^2+2t+9\) có nghiệm
\(\Leftrightarrow minf\left(t\right)\le m\le maxf\left(t\right)\)
\(\Leftrightarrow-\dfrac{9}{4}\le m\le10\)