Thực hiện phép tính:\(x^{n-3}y^3\left(x^{n+3}-x^3y^{n-3}\right)+x^3y^{n-3}\left(x^{n-3}y^3-y^{n+3}\right)\)
Rút gọn \(x^{n-3}y^3\left(x^{n+3}-x^3y^{n-3}\right)+x^3y^{n-3}\left(x^{n-3}y^3-y^{n+3}\right)\)
xn-3y3(xn+3-x3yn-3)+x3yn-3(xn-3y3-yn+3)
=xn-3y3xn+3-xn-3y3x3yn-3+x3yn-3xn-3y3-x3yn-3yn+3
=x(n-3)(x+3)y3-xnyn+xnyn-x3y(n-3)(n+3)
=x(n-3)(x+3)y3-x3y(n-3)(n+3)
Rút gọn biểu thức sau : \(x^{n-3}y^3\left(x^{n+3}-x^3y^{n-3}\right)+x^3y^{n-3}\left(x^{n-3}y^3-y^{n+3}\right)\)
1. Làm tính chia :
\(\left(x^3+8y^3\right):\left(x+2y\right)\)
2. Tìm số tự nhiên n để phép chia sau là phép chia hết :
a) \(\left(5x^3-3x^2+x\right):3x^n\)
b) \(\left(12x^3y^7+9x^4y^5-3x^5y^8\right):3x^{n+1}y^{n+3}\)
1) Tìm số tự nhiên n để đơn thức A chia hết cho đơn thức B
A= \(4x^{n+1}y^2;B=3x^3y^{n-1}\)
2) Rút gọn biểu thức
\(\left[\left(x^3+y^3\right)-2\left(x^2-y^2\right)+3\left(x+y\right)^2\right]:\left(x+y\right)\)
Câu 1:
\(\dfrac{A}{B}=\dfrac{4x^{n+1}y^2}{3x^3y^{n-1}}=\dfrac{4}{3}x^{n-2}y^{2-n+1}=\dfrac{4}{3}x^{n-2}y^{3-n}\)
Để A chia hết cho B thì \(\left\{{}\begin{matrix}n-2>=0\\3-n>=0\end{matrix}\right.\Leftrightarrow2\le n\le3\)
Bài 2:
\(=\dfrac{\left(x+y\right)\left(x^2-xy+y^2\right)-2\left(x+y\right)\left(x-y\right)+3\left(x+y\right)^2}{x+y}\)
\(=x^2-xy+y^2-2\left(x-y\right)+3\left(x+y\right)\)
\(=x^2-xy+y^2-2x+2y+3x+3y\)
\(=x^2-xy+y^2+x+5y\)
Thực hiện phép tính:
a) \(\dfrac{2}{5}xy\left(x^2y-5x+10y\right)\)
b) \(\left(x^2-1\right)\left(x^2+2x+y\right)\)
c) \(\left(x+3y\right)^2\)
d) \(\left(4x-y\right)^3\)
e) \(\left(x^2-2y\right)\left(x^2+2y\right)\)
g) \(18x^4y^2z:10x^4y\)
h) \(\left(x^3y^3+\dfrac{1}{2}x^2y^3-x^3y^2\right):\dfrac{1}{3}x^2y^2\)
i) \(\left(6x^3-7x^2-x+2\right):\left(2x+1\right)\)
k) \(\dfrac{5x-1}{3x^2y}+\dfrac{x+1}{3x^2y}\)
l) \(\dfrac{3x+1}{x^2-3x+1}+\dfrac{x^2-6x}{x^2-3x+1}\)
m) \(\dfrac{2x+3}{10x-4}+\dfrac{5-3x}{4-10x}\)
n) \(\dfrac{x}{x^2+2x+1}+\dfrac{3}{5x^2-5}\)
o) \(\dfrac{x^2+2}{x^3-1}+\dfrac{2}{x^2+x+1}+\dfrac{1}{1-x}\)
p) \(\dfrac{4x+2}{15x^3y}\dfrac{5y-3}{9x^2y}+\dfrac{x+1}{5xy^3}\)
q) \(\dfrac{2x-7}{10x-4}-\dfrac{3x+5}{4-10x}\)
r) \(\dfrac{3}{2x+6}-\dfrac{x-6}{2x^2+6x}\)
x) \(\dfrac{4y^2}{11x^4}.\left(-\dfrac{3x^2}{8y}\right)\)
y) \(\dfrac{x^2-4}{3x+12}.\dfrac{x+4}{2x-4}\)
z) \(\left(x^2-25\right):\dfrac{2x+10}{3x-7}\)
t) \(\left(\dfrac{2x+1}{2x-1}-\dfrac{2x-1}{2x+1}\right):\dfrac{4x}{10x-5}\)
w) \(\left(\dfrac{1}{x^2+x}-\dfrac{2-x}{x+1}\right):\left(\dfrac{1}{x}+x-2\right)\)
c: \(=x^2+6xy+9y^2\)
e: \(=x^4-4y^2\)
Phân tích đa thức thành nhân tử :
A = \(x^3-3x^2+3x^2y+3xy^2+y^3-3y^2-6xy+3x+3y+2015\)
B = \(x^2.\left(y-z\right)+y^2.\left(z-x\right)+z^2.\left(x-y\right)\)
B= x2(y-z)+y2(z-x)+z2(x-y)
= x2(y-z)+y2z-xy2+xz2-yz2
= x2(y-z)+yz(y-z)-x(y2-z2)
= x2(y-z)+yz(y-z)-x(y-z)(y+z)
= (y-z)(x2+yz -xy -xz)
= (y-z)[x(x-y)-z(x-y)]
= (y-z)(x-y)(x-z)
Cho 2 số thực dương x,y thỏa mãn
\(x^3+y^3-3xy\left(x^2+y^2\right)+4x^2y^2\left(x+y\right)-4x^3y^3=0\)
Tìm giá trị nhỏ nhất của biểu thức M=x+y
Tìm x, y đồng thời thỏa mãn 2 điều kiện sau: \(x< y+2\) và \(x^4+y^4-\left(x^2+y^2\right)\left(xy+3x-3y\right)=2\left(x^3-y^3-3x^2-3y^2\right)\)
143. Tính: a) \(-6x^n.y^n.\left(-\dfrac{1}{18}x^{2-n}+\dfrac{1}{72}y^{5-n}\right)\)
b) \(\left(5x^2-2y^2-2xy\right)\left(-xy-x^2+7y^2\right)\)
144. Tìm x từ đẳng thức:
a) \(\left(3x-2\right)\left(2x+3\right)-\left(6x^2-85\right)-99=0\)
b) \(2x+2\left\{-\left[-x+3\left(x-3\right)\right]\right\}=2\)
145. Đơn giản các biểu thức:
\(A\left(x,y\right)=5x\left(2x^n-y^{n-1}\right)-2x\left(x^n-3y^{n-1}\right)+4x\left(x^n-5y^{n-1}\right)\)
\(B\left(x,y\right)=1,4x.\left(0,5x-0,3y\right)-5\left(0,4y^2-4xy\right)+0,2y\left(8y+5x\right)\)
146. Thực hiện phép tính:
a) \(A=3x^{n-2}\left(x^{n+2}-y^{n+2}\right)+y^{n+2}\left(3x^{n+2}-y^{n+2}\right)\)
b) Tính giá trị:
\(B=\left(x^2y+y^3\right)\left(x^2+y^2\right)-y\left(x^4+y^4\right)\)với \(x=0,5;y=2\)
143. a) \(-6x^n.y^n.\left(-\dfrac{1}{18}x^{2-n}+\dfrac{1}{72}y^{5-n}\right)\)
\(=-6.\left(-\dfrac{1}{18}\right)x^n.x^{2-n}.y^n+\left(-6\right).\dfrac{1}{27}x^n.y^n.y^{5-n}\)
\(=\dfrac{1}{3}x^{n+2-n}y^n-\dfrac{2}{9}x^n.y^{n+5-n}\)
\(=\dfrac{1}{3}x^2y^n-\dfrac{2}{9}x^ny^5\)
b) Ta có: \(\left(5x^2-2y^2-2xy\right)\left(-xy-x^2+7y^2\right)\)
\(=5x^2\left(-xy\right)+5x^2.\left(-x^2\right)+5x^2.7y^2-2y^2.\left(-xy\right)-2y^2.\left(-x^2\right)-2y^2.7y^2-2xy.\left(-xy\right)-2xy\left(-x^2\right)-2xy.7y^2\)
\(=-5x^3y-5x^4+35x^2y^2+2xy^3+2x^2y^2-14y^4+2x^2y^2+2x^3y-14xy^3\)
Rút gọn các đa thức đồng dạng, ta có kết quả:
\(-5x^4-3x^3y+39x^2y^2-12xy^3-14y^4\)
Kết quả đã được xếp theo lũy thừa giảm dần của x