Thu gọn đa thức:
B = \(-\dfrac{1}{7}x^2y+x^5y^2-xy+\dfrac{1}{2}x^5y^2-5xy+\dfrac{1}{7}x^2y+2021^0\)
BT10: Thực hiện phép tính
\(a,\dfrac{4}{5}y^2x^5-x^3.x^2y^2\)
\(b,-xy^3-\dfrac{2}{7}y^2.xy\)
\(c,\dfrac{5}{6}xy^2z-\dfrac{1}{4}xyz.y\)
\(d,15x^4+7x^4-20x^2.x^2\)
\(e,\dfrac{1}{2}x^5y-\dfrac{3}{4}x^5y+xy.x^4\)
\(f,13x^2y^5-2x^2y^5+x^6\)
a: =-1/5x^5y^2
b: =-9/7xy^3
c: =7/12xy^2z
d: =2x^4
e: =3/4x^5y
f: =11x^2y^5+x^6
Thu gọn đa thức:
\(C=-\dfrac{1}{2}x^2y-2xy+\dfrac{1}{2}x^2y-xy+xy-\dfrac{1}{3}x+\dfrac{1}{2}+x-0,25\)
\(=x^2y\left(-\dfrac{1}{2}+\dfrac{1}{2}\right)+xy\left(-2-1+1\right)+x\left(-\dfrac{1}{3}+1\right)+\dfrac{1}{2}-\dfrac{1}{4}\)
\(=-2xy+\dfrac{2}{3}x+\dfrac{1}{4}\)
Thu gọn rồi tính giá trị của đa thức P tại \(x=0,5;y=1\)
\(P=\dfrac{1}{3}x^2y+xy^2-xy+\dfrac{1}{2}xy^2-5xy-\dfrac{1}{3}x^2y\)
Thu gọn rồi tính giá trị của đa thức P tại x = 0,5 và y = 1.
Ta có: P = 1313 x2 y + xy2 – xy + 1212 xy2 – 5xy – 1313 x2y
P = 1313 x2 y – 1313 x2y + 1212 xy2 + xy2 – xy – 5xy = 3232 xy2 – 6xy
Thay x = 0,5 và y = 1 ta được
P = 3232 . 0,5 . 12 – 6. 0,5 . 1 = 3434 - 3 = −94−94.
Vậy P = −94−94 tại x = 0,5 và y = 1.
cho 2 đa thức A= \(-4x^5y^3+x^4y^3-3x^2y^3z^2-x^4y^3+x^2y^3z^2-2y^4\)
a) thu gọn rồi tìm bậc đa thức A
b) tìm đa thức B biết rằng B\(-2x^2y^3z^2+\dfrac{2}{3}y^4-\dfrac{1}{5}x^4y^3=A\)
a: \(A=-4x^5y^3-2x^2y^3z^2-2y^4\)
b: \(B=-4x^5y^3-2x^2y^3z^2-2y^4+2x^2y^3z^2-\dfrac{2}{3}y^4+\dfrac{1}{5}x^4y^3=-4x^5y^3+\dfrac{1}{5}x^4y^3-\dfrac{8}{3}y^4\)
giải hệ pt :
a, \(\left\{{}\begin{matrix}3y=\dfrac{y^2+2}{x^2}\\3x=\dfrac{x^2+2}{y^2}\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}x^2y+xy^2+x-5y=0\\2xy+y^2-5y+1=0\end{matrix}\right.\)
c, \(\left\{{}\begin{matrix}x^2+y^2+xy+2y+x=2\\2x^2-y^2-2y-2=0\end{matrix}\right.\)
ý a ở đây bn https://hoc247.net/hoi-dap/toan-10/giai-he-pt-3x-x-2-2-y-2-va-3y-y-2-2-x-2-faq371128.html
b.
Với \(xy=0\) không là nghiệm
Với \(xy\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\left(y^2+1\right)=y\left(5-x^2\right)\\y^2+1=y\left(5-2x\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{y^2+1}{y}=\dfrac{5-x^2}{x}\\\dfrac{y^2+1}{y}=5-2x\end{matrix}\right.\)
\(\Rightarrow\dfrac{5-x^2}{x}=5-2x\)
\(\Leftrightarrow5-x^2=5x-2x^2\)
\(\Leftrightarrow...\)
c.
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x\left(y+1\right)+\left(y+1\right)^2=3\\2x^2-\left(y+1\right)^2=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x\left(y+1\right)+\left(y+1\right)^2=3\\6x^2-3\left(y+1\right)^2=3\end{matrix}\right.\)
\(\Rightarrow5x^2-x\left(y+1\right)-4\left(y+1\right)^2=0\)
\(\Leftrightarrow\left(x-y-1\right)\left(5x+4\left(y+1\right)\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=x-1\\y=-\dfrac{5x+4}{4}\end{matrix}\right.\)
Thế vào 1 trong 2 pt ban đầu...
cho đa thức :A=\(-4x^5y^3+x^4y^3-3x^2y^3z^2+4x^5y^3-x^4y^3+x^2y^3z^2-2y^4\)
a, thu gọn rồi tìm bậc của đa thức A
b, tìm đa thức B , biết rằng :B\(-2x^2y^3z^2+\dfrac{2}{3}y^4-\dfrac{1}{5}x^4y^3=A\)
a, \(A=-4x^5y^3+x^4y^3-3x^2y^3z^2+4x^5y^3-x^4y^3+x^2y^3z^2-2y^4\)
\(=2x^2y^3z^2-2y^4\)
Bậc của đa thức A là 7
Vậy...
b, Ta có: \(B-2x^2y^3z^2+\dfrac{2}{3}y^4-\dfrac{1}{5}x^4y^3=A\)
\(\Rightarrow B-2x^2y^3z^2+\dfrac{2}{3}y^4-\dfrac{1}{5}x^4y^3=2x^2y^3z^2-2y^4\)
\(\Rightarrow B=2x^2y^3z^2-2y^4+2x^2y^3z^2-\dfrac{2}{3}y^4+\dfrac{1}{5}x^4y^3\)
\(=4x^2y^3z^2-\dfrac{8}{3}y^4+\dfrac{1}{5}x^4y^3\)
Vậy...
Thu gọn đơn thức, tìm bậc, hệ số, biến
A = \(x^3.\left(-\dfrac{5}{4}x^2y\right).\left(\dfrac{2}{5}x^3y^4\right)
\)
B = \(\left(-\dfrac{3}{4}x^5y^4\right).\left(xy^2\right).\left(-\dfrac{8}{9}x^2y^3\right)\)
\(A=x^3.\left(-\dfrac{5}{4}x^2y\right).\left(\dfrac{2}{5}x^3y^4\right).\\ A=-\dfrac{1}{2}x^8y^5.\)
- Bậc: 8.
- Hệ số: \(-\dfrac{1}{2}.\)
- Biến: \(x;y.\)
\(B=\left(-\dfrac{3}{4}x^5y^4\right).\left(xy^2\right).\left(-\dfrac{8}{9}x^2y^3\right).\\ B=\dfrac{2}{3}x^8y^9.\)
- Bậc: 9.
- Hệ số: \(\dfrac{2}{3}.\)
- Biến: \(x;y.\)
Thu gọn đa thức, tìm bậc và tính giá trị đa thức tại x = −1; y =1:
B=\(\dfrac{3}{4}XY^2-\dfrac{1}{3}X^2Y-\dfrac{5}{6}XY^2+2X^2Y\)
\(B=\dfrac{3}{4}xy^2-\dfrac{1}{3}x^2y-\dfrac{5}{6}xy^2+2x^2y=-\dfrac{1}{12}xy^2+\dfrac{5}{3}x^2y\)
Bậc:3
Thay x=-1, y=1 vào B ta có:
\(B=-\dfrac{1}{12}xy^2+\dfrac{5}{3}x^2y=-\dfrac{1}{12}.\left(-1\right).1^2+\dfrac{5}{3}.\left(-1\right)^2.1=\dfrac{1}{12}+\dfrac{5}{3}=\dfrac{7}{4}\)
Thu gọn các đơn thức :
a) \(\left(\dfrac{a}{2}\right)^33xy\left(4a^2x^3\right)\left(\dfrac{13}{3}ay^2\right)\)
b)\(\left(2x^2y^3z^4\right)^k\left(-\dfrac{1}{2}xy^2\right)^2\)
c) \(\left(\dfrac{7}{3}x^2y^3\right)^{10}\left(\dfrac{3}{7}x^5y^4\right)^{10}\)
a) \(A=\left(\dfrac{1}{2^3}.3.\dfrac{13}{3}\right)\left(a^{3+2+1}\right)\left(x^{1+3}\right)\left(y^{1+2}\right)=\dfrac{13}{8}.a^6.x^4.y^3\)
\(B=\left[2^k.\left(-\dfrac{1}{2}\right)^2\right]\left(x^{2k+2}\right)\left(y^{3k+2.2}\right)\left(z^{4k+}\right)=2^{k-2}.x^{2\left(k+1\right)}.y^{3k+4}.z^{4k}\)
c, Ta có: \(\left(\dfrac{7}{3}x^2y^3\right)^{10}\left(\dfrac{3}{7}x^5y^4\right)^{10}\)
=\(\left(\dfrac{7}{3}\right)^{10}x^{20}y^{30}\left(\dfrac{3}{7}\right)^{10}x^{50}y^{40}\)
=\(\left(\dfrac{7}{3}\right)^{10}\left(\dfrac{3}{7}\right)^{10}x^{70}y^{70}\)
=\(1x^{70}y^{70}\)
=\(x^{70}y^{70}\)