Mn giúp em với ạ : Cmr 1/2 + 1/3√2 + 1/4√3 +....+ 1/2005√2004 <2
Bài 1: Tính nhanh
a) -5/7-(-5/67) + 13/30 + 1/2 + (-11/6) + 17/14 - (-2/5) b) 3/5 : (-1/15 - 1-6) +3/5 : (1/3 + 16/15 c) (3 - 1/4 + 2/3)-(5 - 1/3 - 6/5) - (6 - 7/4 + 3/2) d) 1/3 + 1/3^2 + 1/3^3 +......+ 1/3^2004 + 1/3^2005 Mọi người giúp em với em cảm ơn ạ =))))))))
1, CMR
1/3+1/32+1/33+1/34+...+1/32004+1/32005 <1/2
2, CMR
1-1/22-1/32-1/42-...-1/20042 >1/2004
B=1/3+1/3^2+1/3^3+...+1/3^2004+1/3^2005 cmr 4/9<B<1/2
.........................................
Tính
M=1/3+1/6+1/10+1/15+...+2/2004*2005
Mọi người giúp mình với ạ...
Tks!!
M.1/2=1/6+1/12+1/20+1/30+....+1/2004.2005
M.1/2=1/2.3+1/3.4+1/4.5+1/5.6+.....+1/2004.2005
M.1/2=1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+.......+1/2004-1/2005
M.1/2=1/2-1/2005
M.1/2=2003/4010
M=2003/2005
Cho hỏi chút đây được viết là toán lớp 7 mà con này mới lớp 6 đã thấy dễ=)))Hình như đầu bạn có vấn đề
Con này trả lời rồi đấy k đúng cho con với=)))
D=1/2 +1/3+1/4+...+1/2005:2004/1+2003/2+2002/2+...1/2004
2004/1 +2003/2 +2002/3 +... +1/2004
= 1+1+...+1 + 2003/2 +2002/3 +...+1/2004
2004 số 1
= (1+ 2003/2)+(1+ 2002/3) +...+(1+ 1/2004)+1
= 2005/2 +2005/3 +...+ 2005/2004 +2005/2005
= 2005(1/2 +1/3 +...+1/2004 +1/2005)
Vậy D =1/2005
Chúc bạn học tốt.
CMR: \(\dfrac{1}{2}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{4\sqrt{3}}+....+\dfrac{1}{2005\sqrt{2004}}< 2\)
CMR: \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{2005\sqrt{2004}}< 2\)
\(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{\left(n+1\right)n}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)\)
\(=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< \sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)=2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(P=\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+...+\frac{1}{2005\sqrt{2004}}\)
\(\Rightarrow P< 2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2004}}-\frac{1}{\sqrt{2005}}\right)\)
\(\Rightarrow P< 2\left(1-\frac{1}{\sqrt{2005}}\right)< 2.1=2\)
CMR \(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{2005\sqrt{2004}}< 2\)
Lời giải:
Xét số hạng tổng quát \(\frac{1}{(n+1)\sqrt{n}}\):
\(\frac{1}{(n+1)\sqrt{n}}=\frac{(n+1)-n}{(n+1)\sqrt{n}}=\frac{(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})}{\sqrt{n+1}.\sqrt{n(n+1)}}\)
\(< \frac{(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})}{\frac{\sqrt{n+1}+\sqrt{n}}{2}.\sqrt{n(n+1)}}\)
\(\Leftrightarrow \frac{1}{(n+1)\sqrt{n}}< 2.\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n(n+1)}}=2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
Cho $n=1,2,....,2004$
\(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{2005\sqrt{2004}}< 2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{2004}}-\frac{1}{\sqrt{2005}}\right)\)
\(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{2005\sqrt{2004}}< 2(1-\frac{1}{\sqrt{2005}})< 2\) (đpcm)
CMR: A=1.2.3...2004.(1+1/2+1/3+...+1/2004) chia hết cho 2005
Ta có: 1.2.3.4...2004 = 1.2.3.4.5...401...2004 = [5.401].1.2.3.4.6....2004 = 2005.1.2.3....2004 chia hết cho 2005
=> Khi nhân với 1 + 1/2 + ... + 1/2004 cũng chia hết cho 2005
AI THẤY ĐÚNG NHỚ ỦNG HỘ
Ta có: \(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2004}\)
\(=\left(1+\frac{1}{2004}\right)+\left(\frac{1}{2}+\frac{1}{2003}\right)+\left(\frac{1}{3}+\frac{1}{2002}\right)+...+\left(\frac{1}{1002}+\frac{1}{1003}\right)\)
\(=\frac{2005}{1.2004}+\frac{2005}{2.2003}+\frac{2005}{3.2002}+...+\frac{2005}{1002.1003}\)
\(=2005\left(\frac{1}{1.2004}+\frac{1}{2.2003}+\frac{1}{3.2002}+....+\frac{1}{1002.1003}\right)\)
\(\Rightarrow A=1.2.3.....2004.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2004}\right)\)\(=1.2.3.....2004.2005\left(\frac{1}{1.2004}+\frac{1}{2.2003}+....+\frac{1}{1002.1003}\right)\)chia hết cho 2005 (đpcm)