cho tam giác ABC vuông tại B.Gọi (O;R) và (i;r) lần lượt là đường tròn ngoại tiếp,nội tiếp của tam giác ABC.
a) chứng minh : AB+BC=2(R+r)
b) gọi H là chân đường cao kẻ từ B của tam giác ABC. Dựng HP vuông góc với BC tại P và HN vuông góc với AB tại N.Chứng minh rằng đường thẳng NP vuông góc với đường thẳng BO
c) tiếp tuyến tại B cắt các tiếp tuyến tại A và tại C của đường tròn (O;R) theo thứ tự tại D và E.gọi K là giao điểm của CD và AE.chứng minh rằng ba điểm B;K;H thẳng hàng.