Cho ABC cân tại C. Qua A kẻ đường thẳng vuông góc với AC, qua B kẻ đường thẳng vuông góc với BC, chúng cắt nhau ở M.
a. Chứng minh
b. Gọi H là giao điểm của AB và CM. Chứng minh rằng AH = BH.
c. Khi ACB = 1200 thì AMB là tam giác gì? Vì sao?
Cho ABC cân tại C. Qua A kẻ đường thẳng vuông góc với AC, qua B kẻ đường thẳng vuông góc với BC, chúng cắt nhau ở M.
a. Chứng minh
b. Gọi H là giao điểm của AB và CM. Chứng minh rằng AH = BH.
c. Khi ACB = 1200 thì AMB là tam giác gì? Vì sao?
Câu a chứng minh cái gì?
Câu c: Khi ABC=1200 là sao?
Cho tam giác ABC cân tại C.Qua A kẻ đường thẳng vuông góc với AC,qua B kẻ đường thẳng vuông góc với BC,chúng cắt nhau ở M.
a) chứng minh:tam giác CMA=tam giác CMB
b) Gọi H là giao điểm của AB và CM.Chứng minh rằng AH=BH
c) Khi ACB=120* thì tam giác AMB là tam giác gì?Vì sao?
* Mình chỉ biết làm a) và b) thôi, cậu thông cảm. Hình tự vẽ nhé *
a) Vì AM vuông góc với AC => CAM = 90 độ
BM vuông góc với BC => CBM = 90 độ
Xét tam giác CMA và tam giác CMB, ta có:
+) CAM = CBM ( cmt )
+) AC = BC ( tam giác ABC cân tại C )
-> CM chung
=> Tam giác CMA = tam giác CMB ( cạnh huyền - cạnh góc vuông )
b) Vì tam giác CMA = tam giác CMB ( cmt )
=> ACH = BCH
Xét tam giác ACH và tam giác BCH, ta có:
+) AC = BC
+) ACH = BCH
-> CH chung
=> Tam giác ACH = tam giác BCH ( c.g.c )
=> AH = BH
Cho tam giác ABC cân tại C.Qua A kẻ đường thẳng vuông góc vơi AC,qua B kẻ đường thẳng vuông góc với BC,chúng cắt nhau ở M. a)chứng minh 2 tam giác CAM=CMB.
b)gọi H là giao điểm của AB và CM .Chứng minh AH=BH.
c)Khi góc ACB=120 độ thì tam giác AMB là tam giác gì?Vì sao?
Giúp mình với mình cần gấp.
a) Xét 2 tam giác vuông CAM và CBM có:
CM: cạnh chung
CA = CB ( Vì tam giác ABC cân tại C)
Do đó tam giác CAM=CBM ( cạnh huyền- cạnh góc vuông)
b) Xét tam giác CHA và CHB có:
\(\widehat{ACH}\)=\(\widehat{BCH}\)( Vì \(\Delta CAM=\Delta CBM\))
CA = CB ( Do tam giác ABC cân tại C)
\(\widehat{CAH}=\widehat{CBH}\)( Do tam giác ABC cân tại C )
Do đó tam giác CHA= CHB (g-c-g)
=> HA= HB ( 2 cạnh tương ứng)
c) Ta có tam giác CAM= CBM
=> AM= BM ( 2 cạnh tương ứng )
=> tam giác AMB cân tại M
Tam giác ABC có \(\widehat{ACB}=120^O\)
=> \(\widehat{CAB}=\frac{180^0-120^0}{2}=30^O\)
=> \(\widehat{MAB}=90^0-\widehat{CAB}=90^0-30^0=60^0\)
\(\Delta MAB\)cân tại M có \(\widehat{MAB}=60^0\)
Do đó tam giác MAB là tam giác đều khi \(\widehat{ACB}=120^0\)
Cho tam giác ABC cân tại C . Qua A kẻ đường thẳng vuông góc với AC , qua B kẻ đường thẳng vuông góc với BC chúng cắt nhau ở M . CM:
a) Gọi H là giao điển của AB và CM . CM : AH=BH
b) Khi ACB =120 đọi thì AMB là tam giác gì? Vì sao ?
Cho tam giác ABC cân tại C . Qua A kẻ đường thẳng vuông góc với AC , qua B kẻ đường thẳng vuông góc với BC chúng cắt nhau ở M . CM:
a) Gọi H là giao điển của AB và CM . CM : AH=BH
b) Khi ACB =120 đọi thì AMB là tam giác gì? Vì sao ?
Cho tam giác ABC cân tại C . Qua A kẻ đường thẳng vuông góc với AC , qua B kẻ đường thẳng vuông góc với BC chúng cắt nhau ở M . CM:a) Gọi H là giao điển của AB và CM . CM : AH=BHb) Khi ACB =120 đọi thì AMB là tam giác gì? Vì sao ?
Cho tam giác ABC cân tại A. Qua A kẻ đường thẳng vuông góc vs AC, qua B kẻ đường thẳng vuông góc vs BC, chúng cắt nhau tại M.
a) Chứng minh tam giác CMA=CMB
b)Gọi H là giao điểm của AB và CM. Chứng minh AH=BH
Cho tam giác ABC cân tại C . Qua A kẻ đường thẳng vuông góc với AC , qua B kẻ đường thẳng vuông góc với BC chúng cắt nhau ở M
a) CM: tam giác CMA= tam giác CMB
b) Gọi H là giao điển của AB và CM . CM : AH=BH
c) Khi ACB =120 độ thì AMB là tam giác gì? Vì sao ?
a) Xét ∆CMA và ∆ CMB có:
AC=BC (∆ABC cân tại C)
\(\widehat{CAM}=\widehat{CBM}=90^o\)
CM chung
=> ∆CMA = ∆CMB (ch-gn)
b) Vì ∆CMA=∆CMB => \(\widehat{ACM}=\widehat{BCM}\)(2 góc tương ứng)
=> CH là phân giác \(\widehat{ACB}\)
∆ACB cân tại C => CH cũng là trung tuyến
=> AH=BH
c) Ta có: \(\widehat{CBA}=\frac{180^o-\widehat{ACB}}{2}=\frac{180^o-120^o}{2}=\frac{60^o}{2}=30^o\)
Mà \(\widehat{CBA}+\widehat{ABM}=90^o\)
=> \(\widehat{AMB}=90^o-\widehat{CBA}=90^o-30^o=60^o\)
∆CMA =∆CMB => AM=MB => ∆AMB cân tại M
=> ∆AMB là ∆ đều
a) Xét ΔBAK vuông tại A và ΔBCK vuông tại C có
BK chung
BA=BC(ΔBAC cân tại B)Do đó: ΔBAK=ΔBCK(cạnh huyền-cạnh góc vuông)
Suy ra: \(\widehat{ABK}=\widehat{CBK}\)(hai góc tương ứng)
mà tia BK nằm giữa hai tia BA,BC
nên BK là tia phân giác của \(\widehat{ABC}\)(đpcm)
b) Ta có: ΔBAK=ΔBCK(cmt)
nên KA=KC(Hai cạnh tương ứng)
Ta có: BA=BC(ΔABC cân tại B)
nên B nằm trên đường trung trực của AC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có:KA=KC(cmt)
nên K nằm trên đường trung trực của AC(Tính chất đường trung trực của một đoạn thẳng) (2)
Từ (1) và (2) suy ra BK là đường trung trực của AC
hay BK\(\perp\)AC(đpcm)
Vì BK là đường trung trực của AC(cmt)
nên BK vuông góc với AC tại trung điểm của AC
mà BK cắt AC tại I(gt)
nên BK\(\perp\)AC tại I và I là trung điểm của AC
Ta có: I là trung điểm của AC(cmt)
nên \(CI=\dfrac{AC}{2}=\dfrac{6}{2}=3\left(cm\right)\)
Áp dụng định lí Pytago vào ΔBIC vuông tại I, ta được:
\(BC^2=BI^2+IC^2\)
\(\Leftrightarrow BI^2=BC^2-IC^2=10^2-3^2=91\)
hay \(BI=\sqrt{91}cm\)
Vậy: \(BI=\sqrt{91}cm\)
Cho tam giác ABC cân tại A. Lấy điểm M thuộc AB, điểm N thuộc tia đối của tia CA sao cho BM=CN. Đường thẳng vuông góc với AB kẻ từ B cắt đường thẳng vuông góc với AC kẻ từ C tại điểm O. Gọi H là giao điểm của AO và BC, kẻ HD vuông góc với AC(D thuộc AC)
a. Chứng minh rằng: Tam giác MON cân
b. Biết AH= 5 cm, HD=3 cm. Tính độ dài HC
c. Gọi F là giao điểm của MN và BC. Chứng minh rằng OF vuông góc với MN
Cho Δ ABC cân tại A. Kẻ AH vuông góc với BC tại H. Qua H kẻ đường thẳng // với AC cắt AB tại D
a) CM: Δ ABH = Δ ACH
b) CM: Δ ADH cân và DH = \(\dfrac{1}{2}\)AB
c) gọi G là giao điểm của AH và CD. Qua A kẻ đường thẳng // BC cắt đường thẳng BG tại K. CM: AB // CK
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔABH=ΔACH
b: góc DAH=góc HAC=góc DHA
=>ΔDAH cân tại D
=>góc DHB=góc DBH
=>DH=DB=DA
=>D là trung điểm của AB
=>DH=1/2AB