giải pt (3x/x^2-x+3)-(2x/x^2-3x+3)=1
help me m cần gấp ạ
1: (3x+2)(x+2)(2x-1)
=(3x^2+6x+2x+4)(2x-1)
=(3x^2+8x+4)(2x-1)
=6x^3-3x^2+16x^2-8x+8x-4
=6x^3+13x^2-4
2: (5x+1)(x-1)+3x(2x+2)
=5x^2-5x+x-1+6x^2+6x
=11x^2+10x-1
3: 4x(2x+1)(x-1)+(x+5)(x-3)
=4x(2x^2-2x+x-1)+x^2+2x-15
=8x^3-4x^2-4x+x^2+2x-15
=8x^3-3x^2-2x-15
4: (2x-1)(x+2)(x-2)+(3x-1)(x-1)
=(2x-1)(x^2-4)+3x^2-4x+1
=2x^3-8x-x^2+4+3x^2-4x+1
=2x^3+2x^2-12x+5
Bài1: giải các pt sau:
a, 3-4x+24+6x= x+27+3x
b, 5-(6-x)=4(3-2x)
c, x-(x+1)/3 = (2x+1)/5
d,(2x-1)/3 - (5x+2)/7 = x+13
Bài 2:
a, (x-1)(3x+1)=0
b, (x-5)(7-x)=0
c, ( x-1)(x+5)(-3x+8)=0
d, x(x^2 - 1 )=0
Giúp mình 2 bài này với , mình đang cần gấp , CẢM ƠN M.N ạ><
2:
a: =>x-1=0 hoặc 3x+1=0
=>x=1 hoặc x=-1/3
b: =>x-5=0 hoặc 7-x=0
=>x=5 hoặc x=7
c: =>\(\left[{}\begin{matrix}x-1=0\\x+5=0\\3x-8=0\end{matrix}\right.\Leftrightarrow x\in\left\{1;-5;\dfrac{8}{3}\right\}\)
d: =>x=0 hoặc x^2-1=0
=>\(x\in\left\{0;1;-1\right\}\)
Giải bất phương trình sau
4x - 3 / x - 2 > 7 - 3x-4/x+3
x mũ 2 + 3x-1 / 2 - x + x > 0
2x - 3 / 3x + 5 < 3x + 5 / 2x - 3
3x+7 / x mũ 2 - x - 2 >_ -5
Mik cần gấp ạ
giải pt:
a, 4x - 10.2x + 16 = 0
b, (2x2 -3x-1)2 - 3(2x2 - 3x -5)-16=0
Ai giúp mk vs đi ạ mk cần gấp ạ
Thanks mn ạ
a, \(4^x-10.2^x+16=0\Leftrightarrow\left(2^x\right)^2-10.2^x+16=0\)
Đặt \(2^x=t\Rightarrow t^2-10t+16=0\Leftrightarrow\orbr{\begin{cases}t=8\\t=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
b. Đặt \(2x^2-3x-1=t\Rightarrow t^2-3\left(t-4\right)-16=0\)
\(\Leftrightarrow t^2-3t-28=0\Leftrightarrow\orbr{\begin{cases}t=7\\t=-4\end{cases}}\)
Thế vào rồi giải tiếp em nhé.
Giúp e vs ạ Giải bất pt: a) 2x - x(3x + 1) < 15 - 3x(x + 2) b) 4(x - 3)² - (2x - 1)² ≥ 12x
a: =>2x-3x^2-x<15-3x^2-6x
=>x<-6x+15
=>7x<15
=>x<15/7
b: =>4x^2-24x+36-4x^2+4x-1>=12x
=>-20x+35>=12x
=>-32x>=-35
=>x<=35/32
\(a,2x-x\left(3x+1\right)< 15-3x\left(x+2\right)\\ \Leftrightarrow2x-3x^2-x< 15-3x^2-6x\\ \Leftrightarrow3x^2-3x^2+2x+6x-x< 15\\ \Leftrightarrow7x< 15\\ \Leftrightarrow x< \dfrac{15}{7}\)
Vậy S={-∞; 15/7}
\(b,4\left(x-3\right)^2-\left(2x-1\right)^2\ge12x\\ \Leftrightarrow4\left(x^2-6x+9\right)-\left(4x^2-4x+1\right)-12x\ge0\\ \Leftrightarrow4x^2-4x^2-24x+4x-12x\ge-36+1\\ \Leftrightarrow-32x\ge-35\\ \Leftrightarrow x\le\dfrac{35}{32}\)
Vậy S={-∞; 35/32]
giải pt: x^5 + 2x^4 +3x^3 + 3x^2 + 2x +1=0
giải pt: x^4 + 3x^3 - 2x^2 +x - 3=0
ta có : x^5+2x^4+3x^3+3x^2+2x+1=0
\(\Leftrightarrow\)x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0
\(\Leftrightarrow\)(x^5+x^4)+(x^4+x^3)+(2x^3+2x^2)+(x^2+x)+(x+1)=0
\(\Leftrightarrow\)x^4(x+1)+x^3(x+1)+2x^2(x+1)+x(x+1)+(x+1)=0
\(\Leftrightarrow\)(x+1)(x^4+x^3+2x^2+x+1)=0
\(\Leftrightarrow\)(x+1)(x^4+x^3+x^2+x^2+x+1)=0
\(\Leftrightarrow\)(x+1)[x^2(x^2+x+1)+(x^2+x+1)]=0
\(\Leftrightarrow\)(x+1)(x^2+x+1)(x^2+1)=0
VÌ x^2+x+1=(x+\(\dfrac{1}{2}\))^2+\(\dfrac{3}{4}\)\(\ne0\) và x^2+1\(\ne0\)
\(\Rightarrow\)x+1=0
\(\Rightarrow\)x=-1
CÒN CÂU B TỰ LÀM (02042006)
b: x^4+3x^3-2x^2+x-3=0
=>x^4-x^3+4x^3-4x^2+2x^2-2x+3x-3=0
=>(x-1)(x^3+4x^2+2x+3)=0
=>x-1=0
=>x=1
giải pt: x^3/(x-1)^3+3x^2/x-1=2(mình cần gấp)
1) X^2+3x-5
2) 3x-2x^2+6
3)x^2+3x-5
tìm max ạ
cần gấp
Câu 1: Biểu thức câu 1 thì chỉ có thể tìm min thôi bạn nhé
Ta có:
$x^2+3x-5=x^2+2.\frac{3}{2}.x+(\frac{3}{2})^2-\frac{29}{4}$
$=(x+\frac{3}{2})^2-\frac{29}{4}\geq -\frac{29}{4}$ do $(x+\frac{3}{2})^2\geq 0$ với mọi $x$
Vậy GTNN của biểu thức là $\frac{-29}{4}$ khi $x=-\frac{3}{2}$
Câu 3 giống câu 1
Câu 2 thì có thể tìm max:
$3x-2x^2+6=6-(2x^2-3x)=6-2(x^2-\frac{3}{2}x)$
$=\frac{57}{8}-2[x^2-2.x.\frac{3}{4}+(\frac{3}{4})^2]$
$=\frac{57}{8}-2(x-\frac{3}{4})^2\leq \frac{57}{8}$ do $(x-\frac{3}{4})^2\geq 0$ với mọi $x$
Vậy GTLN của biểu thức là $\frac{57}{8}$ khi $x=\frac{3}{4}$
\(\sqrt{3x^2+33}+3\sqrt{x}=2x+7\)
giải pt ạ
\(\sqrt{3x^2+33}+3\sqrt{x}=2x+7\)(ĐKXĐ: x>=0)
=>\(\sqrt{3x^2+33}-6+3\sqrt{x}-3=2x-2\)
=>\(\dfrac{3x^2+33-36}{\sqrt{3x^2+33}+6}+3\left(\sqrt{x}-1\right)=2\left(x-1\right)\)
=>\(\dfrac{3x^2-3}{\sqrt{3x^2+33}+6}+3\left(\sqrt{x}-1\right)-2\left(x-1\right)=0\)
=>\(\dfrac{3\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x+1\right)}{\sqrt{3x^2+33}+6}+3\left(\sqrt{x}-1\right)-2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)=0\)
=>\(\left(\sqrt{x}-1\right)\left(\dfrac{3\left(\sqrt{x}+1\right)\left(x+1\right)}{\sqrt{3x^2+33}+6}+3-2\left(\sqrt{x}+1\right)\right)=0\)
=>\(\sqrt{x}-1=0\)
=>x=1(nhận)