tìm độ dài của x
các cạnh x;y;z của 1 tam giác tỷ lệ với 2;4;5.Tìm độ dài của tam giác đó biết tổng độ dài cạnh lớn nhất và cạnh nhỏ nhất hơn độ dài cạnh còn lại là 20cm.
Do các cạnh x y z tỷ lệ với 2;4;5 nên ta có:\(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}\)
Do tổng độ dài cạnh lớn nhất và cạnh nhỏ nhất hơn độ dài cạnh còn lại là 20 cm nên ta có :X+Y-Z
Áp dụng tính chất dãy tỉ số = nhau ta có:\(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{x+y-z}{2+4-5}=\frac{20}{1}\)
suy ra X=40;Y=80;Z=100 sai thì thui nhé
các cạnh x;y;z của 1 tam giác tỷ lệ với 2;4;5.Tìm độ dài của tam giác đó biết tổng độ dài cạnh lớn nhất và cạnh nhỏ nhất hơn độ dài cạnh còn lại là 20cm
đặt = k
tính chất dãy tỉ số bằng nhau
k hộ mk cái
mk không muốn làm
Các cạnh x, y, z của một tam giác tỷ lệ với 2; 4; 5. Tìm độ dài các cạnh của tam giác đó biết tổng độ dài cạnh lớn nhất và cạnh nhỏ nhất hơn độ dài cạnh còn lại là 20cm.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+c-b}{2+5-4}=\dfrac{20}{3}\)
Do đó: a=40/3; b=80/3; c=100/3
các cạnh x y z của 1 tam giác tỷ lệ với 2 4 5.Tìm độ dài của tam giác đó biết tổng độ dài cạnh lớn nhất và cạnh nhỏ nhất hơn độ dài cạnh còn lại là 20cm.
Vì các cạnh x,y,z của 1 tam giác tỉ lệ với 2;4;5
=> \(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}\)
Vì tổng độ dài cạnh lớn nhất và cạnh nhỏ nhất hơn độ dài cạnh còn lại là 20cm
=> (x+z)-y=20 (cm)
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{x+z-y}{2+5-4}=\frac{20}{3}\left(cm\right)\)
Từ \(\frac{x}{2}=\frac{20}{3}=>x=\frac{40}{3}\)
Từ \(\frac{y}{4}=\frac{20}{3}=>y=\frac{80}{3}\)
Từ \(\frac{z}{5}=\frac{20}{3}=>z=\frac{100}{3}\)
Tìm độ dài của tập giá trị của hàm số \(y=\sqrt{x-1}+\sqrt{5-x}\)
Áp dụng 2 BĐT:
\(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\) và \(\sqrt{a}+\sqrt{b}\le\sqrt{2\left(a+b\right)}\)
\(y\ge\sqrt{x-1+5-x}=2\)
\(y\le\sqrt{2\left(x-1+5-x\right)}=2\sqrt{2}\)
Độ dài tập giá trị: \(2\sqrt{2}-2\)
Áp dụng bất đẳng thức Bunhiacopxki ta có :
\(\sqrt{x-1} + \sqrt{5-x} \leq \sqrt{2(x-1+5-x)} =2\sqrt{2}\)
Áp dụng bất đẳng thức \(\sqrt{A} + \sqrt{B} \geq \sqrt{A+B}\) ta có :
\(y \geq \sqrt{x-1+5-x} = 2\)
Độ dài giá trị của y là \(2\sqrt{2}-2\)
cho độ dài 3 cạnh của 1 tam giác là 3,4,x . tìm các giá trị của x
giúp vs
Áp dụng BĐT trong tam giác, ta được: 3+4>x
hay x<7
Vậy: 0<x<7
Nếu x là cạnh huyền
`=>x^2=3^2+4^2=25`
`=>x=5`
Nếu x không là cạnh huyền
`=>x^2=4^2-3^2=7`
`=>x=\sqrt{7}`
Áp dụng BĐT trong tam giác, ta có :
|4 - 3| < x < 4 + 3
⇒ 1 < x < 7
Vậy các giá trị của x là 2, 3, 4, 5, 6.
cho độ dài 3 cạnh của 1 tam giác là 3,4,x . tìm các giá trị của x
3 đường cao của tam giác ABC có độ dài bằng 4,12,x .tìm x
Bài 1
Cho Phương trình \(x^2-\left(m+5\right)x+3m+6=0\) Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 là độ dài của hai cạnh góc vuông của một tam giác vuông có độ dài cạnh huyền bằng 5.
Bài 2
Cho phương trình x2-2(m-3)x+2(m-1)=0, Tìm m để phuowngt rình có 2 nghiệm phân biệt sao cho biểu thức T=x12 + x22 đạt giá trị nhỏ nhất.
Vì phương trình có 2 nghiệm phân biệt \(x_1,x_2\) nên theo hệ thức VI-ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=m+5\\x_1x_2=3m+6\end{matrix}\right.\)
Mà \(x_1,x_2\) là độ dài của hai cạnh góc vuông của một tam giác vuông có độ dài cạnh huyền bằng 5 nên ta có:\(\Rightarrow x_1^2+x_2^2=25\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2=25\Rightarrow\left(m+5\right)^2-2\left(3m+6\right)=25\Leftrightarrow m^2+10m+25-6m-12=25\Leftrightarrow m^2+4m-12=0\Leftrightarrow m^2-2m+6m-12=0\Leftrightarrow\left(m-2\right)\left(m+6\right)=0\Leftrightarrow\left[{}\begin{matrix}m=2\\m=-6\end{matrix}\right.\) b Vì phương trình có 2 nghiệm phân biệt \(x_1,x_2\) nên theo hệ thức Vi-ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=2m-6\\x_1x_2=2m-2\end{matrix}\right.\) \(\Rightarrow T=\left(x_1+x_2\right)^2-2x_1x_2=\left(2m-6\right)^2-2\left(2m-2\right)=4m^2-24m+36-4m+4=4m^2-28m+40=4m^2-28m+49-9=\left(2m-7\right)^2-9\ge-9\) Dấu = xảy ra \(\Leftrightarrow m=\dfrac{7}{2}\)