Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khoa Trần
Xem chi tiết
Miotaru
5 tháng 1 2018 lúc 14:35

Do các cạnh x y z tỷ lệ với 2;4;5 nên ta có:\(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}\)

Do tổng độ dài cạnh lớn nhất và cạnh nhỏ nhất hơn độ dài cạnh còn lại là 20 cm nên ta có :X+Y-Z

Áp dụng tính chất dãy tỉ số = nhau ta có:\(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{x+y-z}{2+4-5}=\frac{20}{1}\)

suy ra X=40;Y=80;Z=100 sai thì thui nhé

reyms
Xem chi tiết
Nguyễn Quang Tùng
16 tháng 12 2017 lúc 21:02

đặt = k 

tính chất dãy tỉ số bằng nhau

k hộ mk cái

mk không muốn làm

giúp nha
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 12 2021 lúc 14:54

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{2}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+c-b}{2+5-4}=\dfrac{20}{3}\)

Do đó: a=40/3; b=80/3; c=100/3

Lê Nam Khánh
Xem chi tiết
Trần Đình Thi
31 tháng 10 2021 lúc 17:06

Vì các cạnh x,y,z của 1 tam giác tỉ lệ với 2;4;5
=> \(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}\)

Vì tổng độ dài cạnh lớn nhất và cạnh nhỏ nhất hơn độ dài cạnh còn lại là 20cm
=> (x+z)-y=20 (cm)
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{x+z-y}{2+5-4}=\frac{20}{3}\left(cm\right)\)
Từ \(\frac{x}{2}=\frac{20}{3}=>x=\frac{40}{3}\)

Từ \(\frac{y}{4}=\frac{20}{3}=>y=\frac{80}{3}\)

Từ \(\frac{z}{5}=\frac{20}{3}=>z=\frac{100}{3}\)

Khách vãng lai đã xóa
Kinder
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 7 2021 lúc 16:54

Áp dụng 2 BĐT:

\(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\) và \(\sqrt{a}+\sqrt{b}\le\sqrt{2\left(a+b\right)}\)

\(y\ge\sqrt{x-1+5-x}=2\)

\(y\le\sqrt{2\left(x-1+5-x\right)}=2\sqrt{2}\)

Độ dài tập giá trị: \(2\sqrt{2}-2\)

HT2k02
25 tháng 7 2021 lúc 16:57

Áp dụng bất đẳng thức Bunhiacopxki ta có :

\(\sqrt{x-1} + \sqrt{5-x} \leq \sqrt{2(x-1+5-x)} =2\sqrt{2}\)

Áp dụng bất đẳng thức \(\sqrt{A} + \sqrt{B} \geq \sqrt{A+B}\) ta có :

\(y \geq \sqrt{x-1+5-x} = 2\)

Độ dài giá trị của y là \(2\sqrt{2}-2\)

Yoon ( A.Ki )
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 2 2021 lúc 21:19

Áp dụng BĐT trong tam giác, ta được: 3+4>x

hay x<7

Vậy: 0<x<7

Yeutoanhoc
28 tháng 2 2021 lúc 21:13

Nếu x là cạnh huyền

`=>x^2=3^2+4^2=25`

`=>x=5`

Nếu x không là cạnh huyền

`=>x^2=4^2-3^2=7`

`=>x=\sqrt{7}`

Nham Nguyen
29 tháng 5 2021 lúc 8:33

Áp dụng BĐT trong tam giác, ta có :

                |4 - 3| < x < 4 + 3

             ⇒ 1 < x < 7

Vậy các giá trị của x là 2, 3, 4, 5, 6.

HaaPhuongg
Xem chi tiết
Trần VĂn An
Xem chi tiết
Linh Bùi
Xem chi tiết
Nguyễn Trọng Chiến
7 tháng 3 2021 lúc 17:44

Vì phương trình có 2 nghiệm phân biệt \(x_1,x_2\) nên theo hệ thức VI-ét ta có:

\(\left\{{}\begin{matrix}x_1+x_2=m+5\\x_1x_2=3m+6\end{matrix}\right.\)

Mà \(x_1,x_2\) là độ dài của hai cạnh góc vuông của một tam giác vuông có độ dài cạnh huyền bằng 5  nên ta có:\(\Rightarrow x_1^2+x_2^2=25\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2=25\Rightarrow\left(m+5\right)^2-2\left(3m+6\right)=25\Leftrightarrow m^2+10m+25-6m-12=25\Leftrightarrow m^2+4m-12=0\Leftrightarrow m^2-2m+6m-12=0\Leftrightarrow\left(m-2\right)\left(m+6\right)=0\Leftrightarrow\left[{}\begin{matrix}m=2\\m=-6\end{matrix}\right.\) b Vì phương trình có 2 nghiệm phân biệt \(x_1,x_2\) nên theo hệ thức Vi-ét ta có:

\(\left\{{}\begin{matrix}x_1+x_2=2m-6\\x_1x_2=2m-2\end{matrix}\right.\) \(\Rightarrow T=\left(x_1+x_2\right)^2-2x_1x_2=\left(2m-6\right)^2-2\left(2m-2\right)=4m^2-24m+36-4m+4=4m^2-28m+40=4m^2-28m+49-9=\left(2m-7\right)^2-9\ge-9\) Dấu = xảy ra \(\Leftrightarrow m=\dfrac{7}{2}\)