cho điểm E thuộc cạnh bên BC cua hinh thang ABCD vẽ đường đi qua C và song song voi AE cắt AD ở K . Chứng minh BK//DE
Điểm E thuộc cạnh bên BC của hình thang ABCD. Vẽ đường thẳng đi qua C và song song với AE, cắt AD ở K. Chứng minh BK//DE
bài 1: Cho hình thang abcd, điểm e thuộc cạnh bên bc.Vẽ đường thẳng qua c và song song với ae cắt ad ở k. cmr bk//de
bài 2:cho tứ giác abcd , đường thẳng qua a // bc cắt bd ở e . đường thẳng qua b và // ad ở g
a)cm eg//dc
b) giả sử ab//cd. cm ab2=eg.dc
Cho hình bình hành ABCD, AB song song với CD; E thuộc BC. Từ C vẽ đường thẳng song song với AE cắt AD ở K. Chứng minh: BK song song với DE
Cho H.thang ABCD. gọi E thuộc canh bên BC(E ở bất kì đâu trên BC). Qua C kẻ đường thẳng song song với AE cắt AD ở K. CMR BK//DE ( sử dụng đ.lí ta-lét đảo)
Gọi I,M lần lượt là giao của AE với BK và CK với AB
AI//MK và IE//KC
nên AI/MK=BI/BK=IE/KC
=>AI/IE=MK/KC
MA//DC
=>MK/KC=AK/KD=AI/IE
=>KI//DE
=>KB//DE
bài 1: Cho hình thang abcd, điểm e thuộc cạnh bên bc.Vẽ đường thẳng qua c và song song với ae cắt ad ở k. cmr bk//de
bài 2:cho tứ giác abcd , đường thẳng qua a // bc cắt bd ở e . đường thẳng qua b và // ad ở g
a)cm eg//dc
b) giả sử ab//cd. cm ab2=eg.dc
Cho hinh thang ABCD(AB//CD), đường thẳng song song với hai đáy lần lượt cắt AD,AC,BD,BC tại I,K,M,N
a.Chứng minh IK=MN
b.Đường thẳng đi qua giao điểm O của hai đương chéo và song song với hai đáy cắt cạnh bên ở E,F. C/M:OE=OF
Cho hình thang ABCD(AB song song CD).
a) Đường thẳng song song 2 đáy cắt cạnh bên AD,BC lần lượt ở I,K và cắt đường chéo BD,AC lần lượt tại L,M.. Chứng minh IL=KM
b) AC cắt BD ở O, vẽ đường thảng qua O song song 2 đáy cắt 2 cạnh bên tại E,F. Chứng minh OE=-OF
Cho hình bình hành ABCD, điểm E thuộc cạnh AB ,điểm F thuộc cạnh AD, đường thẳng đi qua D và song song với EF cắt AC ở I,đường thẳng đi qua B và song song với AB cắt AC tại K. Chứng minh rằng :
a,AI=CK
b,AB/AE+AD/AF=AC/AN
HELPME!!!
a) gọi N là giao điểm của EF và AC
ta có \(DI//EF\Rightarrow\widehat{AID}=\widehat{ENC}\)(so le trong)
\(BK//EF\Rightarrow\widehat{CKB}=\widehat{ENC}\) (đồng vị)
do đó \(\widehat{AID}=\widehat{CKB}\)
Ta lại có \(\widehat{ADI}=180^o-\widehat{AID}-\widehat{IAD}\)
\(\widehat{CBK}=180^o-\widehat{CKB}-\widehat{KCB}\)
\(\widehat{AID}=\widehat{CKB}\) (cmt)
\(\widehat{IAD}=\widehat{KCB}\) (vì AB // CD)
nên \(\widehat{ADI}=\widehat{CBK}\)
Xét tam giác ADI và tam giác CBK có
\(\widehat{ADI}=\widehat{CBK}\)
AD = BC (vì ABCD là hình bình hành)
\(\widehat{IAD}=\widehat{KCB}\) (vì AB // CD)
do đó tam giác ADI = tam giác CBK (g . c . g)
=> AI = CK (2 cạnh tương ứng)
???????????????????
Bài 6: Cho hình thang ABCD có hai đáy là AB và CD. Một đường thẳng song song với AB cắt các cạnh bên AD, BC theo thứ tự ở E và F.
a) Chứng minh ED/AD + BF/BC = 1
b) Các đường chéo của hình thang cắt nhau tại O. Chứng minh OA.OD = OB.OC.
Bài 7: Cho tam giác ABC nhọn, M là trung điểm của BC, E thuộc đoạn thẳng MC. Qua E kẻ đường thẳng song song với AC cắt AB ở D, cắt AM ở K. Qua E kẻ đường thẳng song song với AB cắt AC ở F.
a) Chứng minh CF = DK
b) Gọi H là trực tâm của tam giác ABC. Đường thẳng qua H vuông góc với MH cắt AB và AC theo thứ tự ở I và K’. Qua C kẻ đường thẳng song song với IK’, cắt AH và AB theo thứ tự ở N và P. Chứng minh NC = NP và HI = HK’.
Bài 8: Cho tam giác ABC, điểm M bất kì trên cạnh AB. Qua M kẻ đường thẳng song song với BC cắt AC ở N biết AM = 11 cm, MB = 8 cm, AC = 38 cm. Tính độ dài các đoạn thẳng AN, NC.
Bài 9: Cho góc xAy, trên tia Ax lấy hai điểm D và E, trên tia Ay lấy hai điểm F và G sao cho FD song song với EG. Đường thẳng qua G song song với FE cắt tia Ax tại H. Chứng minh AE 2 = AD.AH.
Bài 10: Cho hình bình hành ABCD. Gọi E là một điểm bất kì trên cạnh AB. Qua E kẻ đường thẳng song song với AC cắt BC ở F và kẻ đường thẳng song song với BD cắt AD ở H. Đường thẳng kẻ quá F song song với BD cắt CD ở G. Chứng minh AH.CD = AD.CG.
Bài 6 :
Tự vẽ hình nhá :)
a) Gọi O là giao điểm của AC và EF
Xét tam giác ADC có :
EO // DC => AE/AD = AO/AC (1)
Xét tam giác ABC có :
OF // DC
=> CF/CB = CO/CA (2)
Từ (1) và (2) => AE/AD + CF/CB = AO/AC + CO/CA = AO + CO/AC = AC/AC = 1 => đpcm
Bài 7 :
a) Do EF // AB => CF / CA = EF / AB => CF / EF = AC / AB (1)
Dựng MG // AC và M là trung điểm của cạnh BC => GM là đường trung bình của tam giác ABC => G là trung điểm của cạnh AB =>AG = BG
Do DK // GM => AD / AG = DK / GM => AD / BG = DK / GM
=> DK / AD = GM / BG = \(\frac{\frac{AC}{2}}{\frac{AB}{2}}=\frac{AC}{AB} \left(2\right)\)
Từ (1) và (2) => CF / EF = DK / AD
Mà tứ giác ADEF là hình bình hành ( vì EF // AD và DE // AF ) nên AD = È
=> CF = DK ( đpcm )
Bài 8 :
Ta có : AB = AM + MB = 11 + 8 = 19 ( cm )
Áp dụng hệ quả định lí Ta-lét vào tam giác ABC, ta có :
AM / AB = AN / AC => AM + AB / AB = AN + AC / AC => 19 + 11 / 19 = AN + 38 / 38 => 30/19 = 38 + AN / 38
=> 1140 = 19.AN + 722
=> AN = ( 1140 - 722 ) / 19 = 22 ( cm )
=> NC = 38 - 12 = 26 ( cm )
chắc sang năm mới làm xong mất
sang năm mk giúp bn na