Cho tam giác ABC có góc A=2B và B=2C chứng minh rằng 1/a+1/b=1/c
Cho a, b, c là 3 cạnh của 1 tam giác. Chứng minh rằng : a/(-a+2b+2c) + b/(-b+2a+2c) + c/(-c+2a+2b) >=1
cho tam giác abc có góc b lớn hơn 90 độ, ab=1\2ac chứng minh rằng :a bc>ab, b góc a <2c
Bài 1. Cho tam giác ABC có A= 80◦ và 2B = 3C. a) Tính các góc B và C. b) Tia phân giác của góc B cắt AC tại D. Đường thẳng qua A song song với BD cắt tia CB tại E. Chứng minh rằng tam giác ABE cân. c) Tia phân giác của góc ABE cắt AE tại F. Chứng minh rằng BF là đường trung trực của AE.
a: \(\widehat{B}=60^0;\widehat{C}=40^0\)
Cho a,b,c là độ dài 3 cạnh tam giác. Chứng minh rằng:
\(\frac{a}{2b+2c-a}+\frac{b}{2b+2c-a}+\frac{c}{2a+2b-c}>=1\)
Với a,b,c là 3 cạnh của 1 tam giác chứng minh rằng :
\(a^4+b^4+c^4+abc\left(a+b+c\right)\ge2\left(a^2b^2+b^2c^2+a^2c^2\right)\)
BĐT cần chứng minh tương đương \(a^4+b^4+c^4\ge2\left(a^2b^2+b^2c^2+c^2a^2\right)-abc\left(a+b+c\right)\)
mà \(a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\)(BĐT cauchy)
\(\Leftrightarrow a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)(cần chứng minh)
ÁP dụng bất đẳng thức bunyakovsky:
\(3\left(a^4+b^4+c^4\right)\ge\left(a^2+b^2+c^2\right)^2\)
mà \(\left(a^2+b^2+c^2\right)^2\ge3\left(a^2b^2+b^2c^2+c^2a^2\right)\)(hệ quả BĐT cauchy)
\(\Rightarrow3\left(a^4+b^4+c^4\right)\ge3\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(\Leftrightarrow a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)(đpcm)
dấu = xảy ra khi a=b=c
1. Cho tam giác ABC có A = 65, 2B = 3C. Tính B = C
2. Cho tam giác ABC vuông góc tại A. Kẻ phân giác BI của B. Lấy điểm K thuộc BC sao cho BK = AB
a. Chứng minh rằng: AI = RI
b. Chứng minh rằng: AK thuộc AI
c. Trên tia đối tia AB lấy E sao cho AE = KC. Chứng minh rằng: K, I, E thẳng hàng và EK = AC
Giúp mk vs huhuhu
cho tam giác abc có 3 góc nhọn. Vẽ đường cáo AD, BE, CF cắt nhau tại H. Chứng minh:
a) \(0< cos^2A+cos^2B+cos^2C< 1\)
b)\(2< sin^2A+sin^2B+sin^2C< 3\)
c)sinA + sinB + sinC < 2( cosA + cosB + cosC)
d)sinB . cosC + sinC . cosB = sinA
e)tanA + tanB + tanC = tanA . tanB . tanC
Cho tam giác ABC vuông tại A có BC = a, CA = b, AB = c, đường cao AH.
a) Chứng minh: \(1+tam^2B=\dfrac{1}{cos^2B};tan\dfrac{C}{2}=\dfrac{c}{a+b}\)
b) Chứng minh: AH = a. sin B. cos B, BH=a·cos2B, CH=a·sin2B
c) Lấy D trên cạnh AC. Kẻ DE vuông góc BC tại E. Chứng minh:
sinB=\(\dfrac{AB\cdot AD+EB\cdot ED}{AB\cdot BE+DA\cdot DE}\) (
a) \(1+tan^2B=1+\dfrac{AC^2}{AB^2}=\dfrac{AB^2+AC^2}{AB^2}=\dfrac{BC^2}{AB^2}=\dfrac{1}{\left(\dfrac{AB}{BC}\right)^2}=\dfrac{1}{cos^2B}\)
b) Ta có: \(a.sinB.cosB=BC.\dfrac{AC}{BC}.\dfrac{AB}{BC}=\dfrac{AC.AB}{BC}=\dfrac{AH.BC}{BC}=AH\)
\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=BC.\left(\dfrac{AB}{BC}\right)^2=BC.cos^2B\)
Tương tự \(\Rightarrow CH=BC.sin^2B\)
1.Cho tam giác ABC cân đỉnh A, góc BAx là góc ngoài tại đỉnh A của tam giác ABC. Chứng minh rằng góc BAx bằng 2.B
2.Cho tam giác ABC có góc A bằng 90, góc B bằng 60. Chứng minh rằng AB = 1/2 BC.