Tìm f(2) biết 2f(x)+f(1/2)=2x+1
Tìm f(2) biết 2f(x)+f(1/2) = 2x+1
giải giúp mk nha ^-^
Đúng là sai đề thật .... mk sửa lại r ... bạn có thể giúp mk xem lại đc k
Đa thức f(x). Tìm f(2) biết \(2f\left(x\right)+f\left(\frac{1}{2}\right)=2x+1\)
Đa thức f(x). Tìm f(2) biết \(2f\left(x\right)+f\left(\frac{1}{2}\right)=2x+1\)
tại x = 1/2 ta có: \(2.f\left(\frac{1}{2}\right)+f\left(\frac{1}{2}\right)=2.\frac{1}{2}+1\) => \(3.f\left(\frac{1}{2}\right)=2\) => \(f\left(\frac{1}{2}\right)=\frac{2}{3}\)
Tại x = 2 ta có: \(2.f\left(2\right)+f\left(\frac{1}{2}\right)=2.2+1=5\)
=> \(2.f\left(2\right)=5-f\left(\frac{1}{2}\right)=5-\frac{2}{3}=\frac{13}{3}\)
=> \(f\left(2\right)=\frac{13}{3}:2=\frac{13}{6}\)
xàm xí quá di thưi
:))) rảnh quá dzậy bn ?
xác định f(x) biết f(x-2) +2f(2-x) = 2x+1
biết f(x)=x^2+2x+3/5 2x^3+3 ; g(x) = -2x^2-1/2x^3 -3x +6
tìm h(x) = 2f(x) - 1/2g(x)
tìm hs =f(x) biết 2f(x) +f(1-x)=2x+3
Cho đa thức f(x) thỏa mãn f(x)+2f(3/2x^2-1/2x-1)=x^3-x+3 với mọi x.Chứng minh rằng f(1)+f(-1)=2f(0)
Cho f(x) +2f'(x) + f"(x) =x^3 + 2x^2 . biết f(0)=f'(0)=1 . tính tích phân cận 0 đến 1 của f(x)
\(f\left(x\right)+2f'\left(x\right)+f''\left(x\right)=x^3+2x^2\)
\(\Leftrightarrow f\left(x\right)+f'\left(x\right)+f'\left(x\right)+f''\left(x\right)=x^3+2x^2\)
\(\Leftrightarrow f\left(x\right)+f'\left(x\right)+\left[f\left(x\right)+f'\left(x\right)\right]'=x^3+2x^2\)
Đặt \(f\left(x\right)+f'\left(x\right)=u\left(x\right)\) ta được:
\(u\left(x\right)+u'\left(x\right)=x^3+2x^2\)
\(\Leftrightarrow e^x.u\left(x\right)+e^x.u'\left(x\right)=e^x\left(x^3+2x^2\right)\)
\(\Leftrightarrow\left[e^x.u\left(x\right)\right]'=e^x\left(x^3+2x^2\right)\)
\(\Rightarrow e^x.u\left(x\right)=\int e^x\left(x^3+2x^2\right)dx=e^x\left(x^3-x^2+2x-2\right)+C\)
\(\Leftrightarrow e^x\left[f\left(x\right)+f'\left(x\right)\right]=e^x\left(x^3-x^2+2x-2\right)+C\)
Thay \(x=0\) vào ta được \(2=-2+C\Rightarrow C=4\)
\(\Rightarrow e^x.f\left(x\right)+e^x.f'\left(x\right)=e^x\left(x^3-x^2+2x-2\right)+4\)
\(\Leftrightarrow\left[e^x.f\left(x\right)\right]'=e^x\left(x^3-x^2+2x-2\right)+4\)
\(\Rightarrow e^x.f\left(x\right)=\int\left[e^x\left(x^3-x^2+2x-2\right)+4\right]dx\)
\(\Rightarrow e^x.f\left(x\right)=e^x\left(x^3-4x^2+10x-12\right)+4x+C_1\)
Thay \(x=0\) vào ta được: \(1=-12+C_1\Rightarrow C_1=13\)
\(\Rightarrow e^x.f\left(x\right)=e^x\left(x^3-4x^2+10x-12\right)+4x+13\)
\(\Rightarrow f\left(x\right)=x^3-4x^2+10x-12+\frac{4x+13}{e^x}\)
\(\Rightarrow\int\limits^1_0f\left(x\right)dx=\int\limits^1_0\left(x^3-4x^2+10x-12\right)dx+\int\limits^1_0\left(4x+13\right).e^{-x}dx\)
Tích phân trước bạn tự tính, tích phân sau cũng đơn giản thôi:
Đặt \(\left\{{}\begin{matrix}u=4x+13\\dv=e^{-x}dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=4dx\\v=-e^{-x}\end{matrix}\right.\)
\(\Rightarrow I=-\left(4x+13\right).e^{-x}|^1_0+4\int\limits^1_0e^{-x}dx=\frac{-17}{e}+13-4.e^{-x}|^1_0=17-\frac{21}{e}\)
Casio cho kết quả tích phân trước là \(-\frac{97}{12}\)
Vậy \(\int\limits^1_0f\left(x\right)dx=\frac{107}{12}-\frac{21}{e}\)