x - 1/2 + 2/3 = 3/4
A = (1 + 1/2 ) × ( 1 + 1/3 ) × ( 1 + 1/4 ) × .... × ( 1 + 1/100)
Bài 1. Thu gọn:
a) x2 – 4 – (x + 2)2 | b) (x + 2)(x – 2) – (x – 3)(x + 1) |
c) (x – 2)(x + 2) – (x – 2)(x + 5) | d) (6x + 1)2 + (6x – 1)2 – 2(6x + 1)(6x – 1) |
e) 7a(3a – 5) + (2a -3)(4a + 1) – (6a – 2)2 | g) (5y – 3)(5y + 3) – (5y – 4)2 |
h) (3x + 1)3 – (1 – 2x)3 | i) (2x + 1)2 + 2(4x2 – 1) + (2x – 1)2 |
a: Ta có: \(x^2-4-\left(x+2\right)^2\)
\(=x^2-4-x^2-4x-4\)
=-4x-8
b: Ta có: \(\left(x+2\right)\left(x-2\right)-\left(x-3\right)\left(x+1\right)\)
\(=x^2-4-x^2+2x+3\)
=2x-1
c: ta có: \(\left(x-2\right)\left(x+2\right)-\left(x-2\right)\left(x+5\right)\)
\(=\left(x-2\right)\left(x+2-x-5\right)\)
\(=-3x+6\)
d: Ta có: \(\left(6x+1\right)^2-2\left(6x+1\right)\left(6x-1\right)+\left(6x-1\right)^2\)
\(=\left(6x+1-6x+1\right)^2\)
=4
e: ta có: \(7a\left(3a-5\right)+\left(2a-3\right)\left(4a+1\right)-\left(6a-2\right)^2\)
\(=21a^2-35a+8a^2+2a-12a-3-\left(36a^2-24a+4\right)\)
\(=29a^2-45a-3-36a^2+24a-4\)
\(=-7a^2-21a-7\)
g: ta có: \(\left(5y-3\right)\left(5y+3\right)-\left(5y-4\right)^2\)
\(=25y^2-9-25y^2+40y-16\)
=40y-25
h: Ta có: \(\left(3x+1\right)^3-\left(1-2x\right)^3\)
\(=27x^3+27x^2+9x+1-1+6x-12x^2+8x^3\)
\(=35x^3+15x^2+15x\)
i: Ta có: \(\left(2x+1\right)^2+2\left(4x^2-1\right)+\left(2x-1\right)^2\)
\(=\left(2x+1+2x-1\right)^2\)
\(=16x^2\)
Tính
a) (x-1/2)+(x-1/4)+(x-1/8)+...+(x-1/512)
Tìm x
a) (x-1/1×2)+(x-1/2×3)+...+(x-1/100×101)
b) (x-1)+(x-2)+(x-3)+...+(x-101)=5050
c) x+1/2+1/3+1/4+...+1/100=3/2+4/3+5/4++...+101/100
các bạn cho mình xin cách giải mấy bài này với
1. tính A= (1+2+3+...+100)(1/3 - 1/5 - 1/7 - 1/9) [ cái này là tử nha ]
1/2 + 1/3 + 1/4 + ... + 1/100 [ cái này là mẫu ]
2 tính B= 1 + 1/2 x (1+2) + 1/3 x (1+2+3) + 1/4 x (1+2+3+4) + ... + 1/16 x (1+2+3+...+16)
3 tính C= 1 + 1/2^2 + 1/3^2 + 1/4^2 + ... + 1/100^2
1, Tính \(\frac{1}{2}-\left(\frac{1}{3}+\frac{2}{3}\right)+\left(\frac{1}{4}+\frac{2}{4}+\frac{3}{4}\right)-\left(\frac{1}{5}+\frac{2}{5}+\frac{3}{5}+\frac{4}{5}\right)+...+\left(\frac{1}{100}+\frac{2}{100}+\frac{3}{100}+...+\frac{99}{100}\right)\)2,Tính \(\left(1-\frac{1}{2^2}\right)x\left(1-\frac{1}{3^2}\right)x\left(1-\frac{1}{4^2}\right)x...x\left(1-\frac{1}{n^2}\right)\)
(2+4+6+...+100) - (1+3+5+...+99) = ?
1 x 2 + 2 x 3 + 3 x 4 + ... + 99 x 100 = ?
3 x 4 + 4 x 5 + 5 x 6 + ... + 149 x 150 = ?
1 + (1 + 2) + ( 1 + 2 + 3) + (1 + 2 + 3 + 4) + ....... + (1 + 2 + 3 + ... + 99)
----------------------------------------------------------------------------------------------------------- ( gạch ngang phân số )
1 x 99 + 2.98 + 3.97 + ...... + 99 x 1
Tính: (1-1/1+2)x(1-1/1+2+3)x(1-1/1+2+3+4)x...x(1-1/1+2+3+4+...+99+100)
vì tử của tất cả các số là 1-1 mà 1-1=0
suy ra:=0+0+0+...+0 (100 số 0)
Suy ra:=0
vậy (1-1/1+2).(1-1/1+2+3).....(1-1/1+2+3+...+99+100)=0
1 + ( 1+ 2 ) + 1+2+3+4) + ...1+2+3+......+100 / 100 x 1 + 99x2 + 98x3 + 2x99 + 1 x 100
Bài 1: Đơn giản biểu thức rồi tìm giá trị
a, 3(2a-1)+5(3-a) tại a=\(\dfrac{-3}{2}\)
b, 25x-4(3x-1)+7(5-2x) tại x=2,1
c, 12(2-3b)+35b-9(b+1) tại b=\(\dfrac{1}{2}\)
d,4a\(^2\)-2(10a-1)+4a(2-a\(^2\)) tại a= -0,2
\(a,a=-\dfrac{3}{2}\)
\(\Rightarrow3\left[2\left(-\dfrac{3}{2}\right)-1\right]+5\left(3+\dfrac{3}{2}\right)=3.\left(-3-1\right)+5.\dfrac{9}{2}=-12+\dfrac{45}{2}=\dfrac{21}{2}\)
\(b,x=2,1\)
\(\Rightarrow25.2,1-4\left(3.2,1-1\right)+7\left(5-2.2,1\right)=52,5-4.5,3+7.0,8=36,9\)
\(c,b=\dfrac{1}{2}\)
\(\Rightarrow12\left(2-3.\dfrac{1}{2}\right)+35.\dfrac{1}{2}-9\left(\dfrac{1}{2}+1\right)=12.\dfrac{1}{2}+\dfrac{35}{2}-9.\dfrac{3}{2}=6+\dfrac{35}{2}-\dfrac{27}{2}=10\)
\(d,a=-0,2\)
\(\Rightarrow4.\left(-0,2\right)^2-2\left(10.\left(-0,2\right)-1\right)+4.\left(-0,2\right)\left(2-\left(-0,2\right)^2\right)\)
\(=4.0,04-2.\left(-3\right)-0,8.1,96\)
\(=0,16+6-1,568\)
\(=4,592\)
a: A=6a-3+15-5a=a+12
Khi a=-3/2 thì A=-3/2+12=10,5
b: B=25x-12x+4+35-8x=5x+39
Khi x=2,1 thì B=10,5+39=49,5
c: C=24-6b+35b-9b-9=20b+15
Khi b=0,5 thì C=10+15=25
d: D=4a^2-20a+2+8a-4a^3=-4a^3+4a^2-12a+2
Khi a=-0,2 thì
D=-4*(-1/5)^3+4*(-1/5)^2-12*(-1/5)+2=4,592
A=(1+1/2).(1+1/3).(1+1/4)...(1×1/2009)
B=(1-1/2).(1-1/3)...(1-1/100)
B= 1/2.2/3.3/4...99/100
X+1/99+x+2/98+x+3/97+x+4/96
\(A=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}........\frac{2010}{2009}=\frac{3.4.5...2010}{2.3.4....2009}=\frac{2010}{2}=1005\)
\(B=\frac{1.2.3......99}{1.2.3.4.....100}=\frac{1}{100}\)