Câu 3. Thu gọn đa thức sau, tìm bậc D = -3 E = 5 - ( 3x - 4+1) + ( 8- 3x – 6)
1. Cho biết phần hệ số, phần biến và bậc của đơn thức sau ( 3x2).(-2y3)
2. Cho đa thức P = 4x4y2+5/6+3x3y5-3x4y2+4y3-1/3x3y5-x4y2
a, Thu gọn đa thức trên
b, Tìm bậc của đa thức P
c, Tính giá trị của đa thức P tại x=2 ; y = 0,5
1, 3x2.(-2y)3 = [3.(-2)](x2.y3) = -6x2y3
Hệ số: -6
phần biến: x2y3
bậc của đơn thức: 5
2,a, \(P=4x^4y^2+\frac{5}{6}+3x^3y^5-3x^4y^2+4y^3-\frac{1}{3}x^3y^5-x^4y^2\)
\(=\left(4x^4y^2-3x^4y^4-x^4y^4\right)+\left(3x^3y^5-\frac{1}{3}x^3y^5\right)+\frac{5}{6}+4y^3\)
\(=\frac{8}{3}x^3y^5+\frac{5}{6}+4y^3\)
b, bậc cua đa thức P là 8
c, Thay x = 2, y = 0,5 vào P ta được
\(P=\frac{8}{3}.2^3.\left(0,5\right)^5+\frac{5}{6}+4.\left(0,5\right)^3\)
\(=\frac{8}{3}.8.\frac{1}{32}+\frac{5}{6}+4.\frac{1}{8}\)
\(=\frac{2}{3}+\frac{5}{6}+\frac{1}{2}\)
\(=2\)
Câu 8 :
a , Thu gọn và chỉ ra bậc của đơn thức A=1/2x^3 * 8/5x^2
b , Cho đa thức P(x)=x^2-5x+6
Tính P(0) và P(2)
Câu 9 : Cho 2 đa thức A(x) =5x^3+x^2-3x+5 và B(x)=5x^3+x^2+2x-3
a , Tính A(x)+B(x)
b, Tìm nghiệm của đa thức H(x)= A(x)-B(x) ( giúp vs)
\(Câu8\)
\(a,A=\dfrac{1}{2}x^3\times\dfrac{8}{5}x^2=\left(\dfrac{1}{2}\times\dfrac{8}{5}\right)x^{3+2}=\dfrac{4}{5}x^5\)
b, \(P\left(0\right)=0^2-5.0+6=6\\ P\left(2\right)=2^2-5.2+6=0\)
Câu 9
\(a,A\left(x\right)+B\left(x\right)=5x^3+x^2-3x+5+5x^3+x^2+2x-3\\ =\left(5x^3+5x^3\right)+\left(x^2+x^2\right)+\left(-3x+2x\right)+\left(5-3\right)\\ =10x^3+2x^2-x+2\)
\(b,H\left(x\right)=A\left(x\right)-B\left(x\right)=5x^3+x^2-3x+5-\left(5x^3+x^2+2x-3\right)\\ =5x^3+x^2-3x+5-5x^3-x^2-2x+3\\ =\left(5x^3-5x^3\right)+\left(x^2-x^2\right) +\left(-3x-2x\right)+\left(5+3\right)\\ =-5x+8\)
\(H\left(x\right)=0\\ \Rightarrow-5x+8=0\\ \Rightarrow x=\dfrac{8}{5}\)
vậy nghiệm của đa thức là \(x=\dfrac{8}{5}\)
Cho đa thức P = x^4 – 3 (x-1) + x^3 – 2x + x^2 – 1 – 2x^4
Q = -3x^2 + 2x (x+3) + 3x^4 – x(3x^2 +5 ) – 2
a) Thu gọn các đa thức trên rồi xác định hệ số cao nhất , hệ số tự do và tìm bậc của mỗi đa thức
Tìm đa thức M biết M = 3P +Q
a, \(P=-x^4+x^3+x^2-5x+2\)
hế số cao nhất 2 ; hế số tự do 2 ; bậc 4
\(Q=-3x^2+2x^2+6x+3x^4-3x^3-5x-2=3x^4-3x^3-x^2+x-2\)
hệ số cao nhất 3 ; hệ số tự do -2 ; bậc 4
b, \(M=-3x^4+3x^3+3x^2-15x+6+3x^4-3x^3-x^2+x-2=2x^2-14x+4\)
Thu gọn rồi tìm bậc của đa thức thu gọn
x^5 - 3 xy^3 - 6xy^2 +xy^3 + 3x^5y
\(x^5-3xy^3-6xy^2+xy^3+3x^5y=x^5-\left(3xy^3-xy^3\right)-6xy^2+3x^5y=x^5-2xy^3-6xy^2+3x^5y\)
Bậc:6
x5−3xy3−6xy2+xy3+3x5y=x5−(3xy3−xy3)−6xy2+3x5y=x5−2xy3−6xy2+3x5yx5−3xy3−6xy2+xy3+3x5y=x5−(3xy3−xy3)−6xy2+3x5y=x5−2xy3−6xy2+3x5y
Bậc:6
Mn giúp mình nha mình cảm ơn nhiều
Câu 1: Cho 2 đa thức: P(x) = -2x^2 + 4x^4 – 9x^3 + 3x^2 – 5x + 3 Q(x) = 5x^4 – x^3 + x^2 – 2x^3 + 3x^2 – 2 – 5x a) Thu gọn và sắp xếp các hạng tử của mỗi đa thức trên theo lũy thừa giảm dần của biến. b) Tìm bậc, chỉ rõ hệ số tự do, hệ số cao nhất của đa thức P(x) và Q(x) sau khi thu gọn. c) Tính P(2) và Q(-1) d) Tính P(x) + Q(x) và P(x) – Q(x)
a) P(x) = -2x^2 + 4x^4 – 9x^3 + 3x^2 – 5x + 3
=4x^4-9x^3+x^2-5x+3
Q(x) = 5x^4 – x^3 + x^2 – 2x^3 + 3x^2 – 2 – 5x
=5x^4-3x^3+4x^2-5x-2
b)
P(x)
-bậc:4
-hệ số tự do:3
-hệ số cao nhất:4
Q(x)
-bậc :4
-hệ số tự do :-2
-hệ số cao nhất:5
Cho đa thức
f(x)= 2x^3 - x^5 + 3x^4 + x^2 - 1 phần 2 x^3 + 3 x ^ 5 - 2x^2 - x^4 +1
a) Thu gọn và sắp xếp đa thức trên theo lũy thừa giảm của biến
b) Tìm bậc của đa thức
c) Tính f (1) ; f ( - 1)
a) Ta có:
\(f\left(x\right)=2x^3-x^5+3x^4+x^2-\dfrac{1}{2}x^3+3x^5-2x^2-x^4+1\)
\(f\left(x\right)=\left(-x^5+3x^5\right)+\left(3x^4-x^4\right)+\left(2x^3-\dfrac{1}{2}x^3\right)+\left(x^2-2x^2\right)+1\)
\(f\left(x\right)=2x^5+2x^4+\dfrac{3}{2}x^3-x^2+1\)
Sắp xếp đa thức f(x) the lũy thừa giảm dần của biến, ta được:
\(f\left(x\right)=2x^5+2x^4+\dfrac{3}{2}x^3-x^2+1\)
b) Bậc của đa thức f(x) là 5
c) Ta có:
\(f\left(1\right)=2\cdot1^5+2\cdot1^4+\dfrac{3}{2}\cdot1^3-1^2+1=5,5\) . Vậy f(1) = 5,5.
\(f\left(-1\right)=2\cdot\left(-1\right)^5+2\cdot\left(-1\right)^4+\dfrac{3}{2}\cdot\left(-1\right)^3-\left(-1\right)^2+1=-1,5\). Vậy f(-1) = -1,5.
Giúp mình nha Câu 1: cho da thúc P(x)=5x³-3x²+8-3x³+4x⁵-3+8x+5x² a) thu gọn đa thức P(x) b) tìm bậc, hệ số cao nhất hệ số tự do c) sắp xếp theo lũy thừa giảm dần
a) \(P\left(x\right)=5x^3-3x^2+8-3x^3+4x^5-3+8x+5x^2\)
\(P\left(x\right)=\left(5x^3-3x^3\right)-\left(3x^2-5x^2\right)+\left(8-3\right)+4x^5+8x\)
\(P\left(x\right)=2x^3+2x^2+5+4x^5+8x\)
b) Đa thức có bậc là: 5, hệ số cao nhất là 8, hệ số tự do là: 5
c) Sắp xếp theo lũy thừa giảm dần:
\(P\left(x\right)=2x^3+2x^2+5+4x^5+8x\)
\(P\left(x\right)=4x^5+2x^3+2x^2+8x+5\)
Cho đa thức : A(x) = 2x^3 + x - 3x^2 - 2x^3 - 1 + 3x^2
a) Thu gọn và xác định bậc của đa thức A(x)
b) Tìm nghiệm của đa thức A(x)
`a, A(x) = 2x^3 + x - 3x^2 - 2x^3 - 1 + 3x^2`
`= (2x^3-2x^3) +(-3x^2+ 3x^2) + x-1`
`= x-1`
Bậc của đa thức : `1`
`b,` Ta có ` A(x)= x-1=0`
`x-1=0`
`=>x=0+1`
`=>x=1`
a) \(A\left(x\right)=2x^3+x-3x^2-2x^3-1+3x^2\)
\(A\left(x\right)=\left(2x^3-2x^3\right)-\left(3x^2-3x^2\right)+x-1\)
\(A\left(x\right)=x-1\)
Đa thức có bật 1
b) \(x-1=0\)
\(\Rightarrow x=1\)
Vậy đa thức có nghiệm là 1
cho đa thức M=3x5y3-4x4y3+2x4y3+7xy2-3x5y3
a/ thu gọn đa thức M và tìm bậc của đa thức vừa tìm được ?
b/ tính giá trị của đa thức M tại [x]=1 và y=-1 ?
a, Ta có : \(M=3x^5y^3-4x^4y^3+2x^4y^3+7xy^2-3x^5y^3\)
\(=-2x^4y^3+7xy^2\)
Bậc : 7
b, Thay x = 1 ; y = 1
\(M=-2.1^4.\left(-1\right)^3+7.1.\left(-1\right)^2\)
\(=2+7=9\)