cho các số a, b, x, y # 0. CMR : (ax+by)^2 < (a^2+b^2)(x^2+y^2) -- dấu bằng xảy ra khi nào
Cho phân số a/b. Tìm các số nguyên x, y sao cho a/b=a+x/b+y
Ta có a /b = x/y = a +x / b+ y
=> x chia hết cho a ; y chia hết cho b
x/y = cx / cy thì a/b = a+ x / b+ y ( c là một chữ số bất kì )
cho x;y;z là các số nguyên dương và x+y+z là số lẻ, các số thực a,b,c thỏa mãn: a-b/x=b-c/y=a-c/z.cmr: a=b=c
a-b+b-x-a+c/x+y-z=0/x+y-z=0
suy ra a-b=0 suy ra a=b
b-c=0 suy ra b=c
Câu 1: xy + x - y = 4
<=> (xy + x) - (y+ 1) = 3
<=> x(y+1) - (y + 1) = 3 <=> (y + 1) (x - 1) = 3
Theo bài ra cần tìm các số nguyên dương x, y =>
Xét các trường hợp y + 1 nguyên dương và x -1 nguyên dương.
Mà 3 = 1 x 3 => Chỉ có thể xảy ra các trường hợp sau:
* TH1: y + 1 = 1; x - 1 = 3 => y = 0; x = 4 (loại vì y = 0)
* TH2: y + 1 = 3; x -1 = 1 => y = 2; x = 2 (t/m)
Vậy x = y = 2.
Câu 2: Ta có: (a - b)/x = (b-c)/y = (c-a)/z
=(a-b + b -c + c - a) (x + y + z) = 0 Vì x; y
; z nguyên dương => a-b =0; b - c = 0; c- a =0 => a = b = c
cho x,y,z là các số nguyên dương và x +y+z là số lẻ, các số thực a,b,c thỏa mãn (a-b)/x=(b-c)/y= (a-c)/z chứng minh rằng a= b= c
Cho x,y,z là các số nguyên tố khác 2 và các số thực a,b,c thỏa mãn dãy tỉ số bằng nhau a-b/x=b-c/y=a-c/z.CMR a=b=c
Dễ thế mà chẳng ai làm được..
Cho phân số a/b . Tìm các số nguyên x, y sao cho (a+x)/(b+y)
Cho phân số a/b. Tìm các số nguyên x,y sao cho a+x/b+y bằng phân số đã cho?
a) Cho x, y, z là 3 số dương. CMR có tam giác mà các cạnh của nó có độ dài là a, b, c với: a=x+y; b=y+z; c=z+x.
b) Cho a, b, c là các độ dài 3 cạnh của một tam giác. CMR có các số dương x, y, z sao cho: a=x+y; b=y+z; c=z+x.
a) Vì x,y,z>0 nên a,b,c>0 (1)
Ta có: a+b-c=x+y+y+z-z-x=2y>0
=> a+b>c. Tương tự ta có b+c>a, c+a>b (2)
Từ (1) và (2) => Tồn tại tam giác mà các cạnh của nó có độ dài 3 cạnh là a,b,c
b) Vì a,b,c là độ dài 3 cạnh của 1 tam giác nên ta có a+b>c hay x+y+y+z>z+x => y>0
Tương tự: z,x>0
Vậy có các số dương x,y,z tm
a) Tìm các số tự nhiên x,y biết rằng \(\dfrac{3+x}{7+y}\) = \(\dfrac{3}{7}\) và \(x+y=20\)
b) Cho các số\(a,b,c\) là các số nguyên. Biết tích \(ab\) là số liền sau tích \(cd\) và \(a+b=c+d\) . Chứng minh rằng \(a=b\)
a) Ta có: \(\dfrac{3+x}{7+y}=\dfrac{3}{7}\)
\(\Leftrightarrow\dfrac{x+3}{3}=\dfrac{y+7}{7}\)
mà x+y=20
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x+3}{3}=\dfrac{y+7}{7}=\dfrac{x+y+3+7}{3+7}=\dfrac{20+10}{10}=3\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x+3}{10}=3\\\dfrac{y+7}{7}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+3=30\\y+7=21\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=27\\y=14\end{matrix}\right.\)
Vậy: x=27; y=14
Cho phân số a/b .Tìm các số nguyên x ,y sao cho a+x/b+y =a/b
+
cho a,b,c là các số thực # 0. Tìm các số thực x,y,z #0 thỏa mãn: x*y/a*y+b*x=y*z/b*z+c*y=z*x/c*x+a*z=(x^2+y^2+z^2)/(a^2+b^2+c^2)
Cho x,y,z là các số nguyên dương và x+y+z là các số lẻ, các số thực a,b,c thỏa mãn :\(\frac{a-b}{x}=\frac{b-c}{y}=\frac{a-c}{z}\)
CMR: a=b=c
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{a-b}{x}=\frac{b-c}{y}=\frac{a-c}{z}=\frac{a-b+b-c-a+c}{x+y-z}=\frac{0}{x+y-z}=0\)
\(\Rightarrow\frac{a-b}{x}=0\Leftrightarrow a-b=0\Leftrightarrow a=b\)
\(\frac{b-c}{y}=0\Leftrightarrow b-c=0\Leftrightarrow b=c\)
\(\frac{a-c}{z}=0\Leftrightarrow a-c=0\Leftrightarrow a=c\)
\(\Rightarrow a=b=c\left(đpcm\right)\)