TÌM SỐ NGUYÊN n SAO CHO PHÂN SỐ 3n-1 PHẦN 3n-4 NHẬN GIÁ TRỊ NGUYÊN
Tìm số nguyên n sao cho phân số \(\frac{3n-1}{3n-4}\)nhận giá trị nguyên
\(\frac{3x-1}{3x-4}=\frac{3x-4+1}{3x-4}=\frac{3x-4}{3x-4}+\frac{1}{3x-4}=1+\frac{1}{3x-4}\)
Để phân số nguyên thì 3x-4 là ước của 1 Ư(1) = {-1;1}
+) 3x-4 = -1 => x =1
+) 3x-4 = 1 => 5/3 (loại)
Vậy với x = 1 thì phân số nhận giá trị nguyên
\(\frac{3n-1}{3n-4}=\frac{3n-4}{3n-4}+\frac{3}{3n-4}=1+\frac{3}{3n-4}\)
để \(\frac{3n-1}{3n-4}\)nhận giá trị nguyên thì: \(1+\frac{3}{3n-4}\in Z\Rightarrow3n-4\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
3n-4 | 1 | -1 | 3 | -3 |
n | 5/3(loại) | 1 | 7/3(loai) | 1/3(loai) |
vậy n=1 thì \(\frac{3n-1}{3n-4}\)nhận giá trị nguyên
Tìm số nguyên n sao cho phân số \(\frac{3n-1}{3n-4}\) nhận giá trị nguyên.
Ta có: 3n - 1/ 3n -4 = 3n - 4 + 3/ 3n - 4 = 1+ 3/ 3n - 4
Để phân số đó nhận giá trị nguyên thì 3 phải chia hết cho 3n - 4
Suy ra: 3n - 4 thuộc Ư(3) = (1; 3; -1; -3)
Suy ra: 3n thuộc (5; 7 ; 3; 1)
Rồi tiếp tục tính nhé.
Cho một đúng nhé
1.Cho A=2n+3/n,n thuộc Z
a) Với giá trị nào của n thì A là phân số
b)Tìm giá trị n để A là số nguyên
2.Tìm số nguyên sao cho phân số 3n-1/3n-4 nhận giá trị nguyên
3)So sánh các phân số 6 a+1/a+2 và a+2/a+3
tìm số nguyên n sao cho phân số 2n-1/3n-4 có giá trị nguyên
bạn tách 1 phần ở tử tương đương vs 1 phần ở mẫu để ko có n là đc. còn cụ thể thế nào thì mk ko bt. sorry nha
Bài 10: Tìm tất cả các số nguyên n sao cho các phân số sau có giá trị là số nguyên
a) 12 phần 3n-1 b) 2n+5 phần n-3 c)3n phần n+2
giúp mik vs các bn ơi :>>>>>>
-bạn tự lập bảng nhé
a, \(3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
b, \(\dfrac{2\left(n-3\right)+11}{n-3}=2+\dfrac{11}{n-3}\Rightarrow n-3\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
n-3 | 1 | -1 | 11 | -11 |
n | 4 | 2 | 14 | -8 |
c, \(\dfrac{3n}{n+2}=\dfrac{3\left(n+2\right)-6}{n+2}=3-\dfrac{6}{n+2}\Rightarrow n+2\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
Tìm số nguyên n sao cho phân số \(\frac{3n+4}{3n-2}\)có giá trị nguyên
\(=\frac{3n-2+6}{3n-2}=\frac{3n-2}{3n-2}+\frac{6}{3n-2}\)
\(\Rightarrow\)3n-2\(\in\) Ư(6)
3n-2=-1
3n=-1+2
3n=1 loại
3n-2=1
3n=1+2
3n=3
n=1 chọn
bạn tự làm tiếp nhé
tìm số nguyên n để các Phân số sau có giá trị là số nguyên:
-3 phần n-1 4 phần 3n+1 n+3 phần 2n-1
a: Để A nguyên thì \(n-1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{2;0;4;-2\right\}\)
b: Để B nguyên thì \(3n+1\in\left\{1;4\right\}\)
hay \(n\in\left\{0;1\right\}\)
c: Để C nguyên thì \(n+3⋮2n-1\)
\(\Leftrightarrow2n+6⋮2n-1\)
\(\Leftrightarrow2n-1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{1;0;4;-3\right\}\)
Tìm các số nguyên n sao cho các phân số sau có giá trị là số nguyên:
a) 3 n − 3
b) − 3 n − 1
c) 4 3 n + 1
a) Để 3 n − 3 là số nguyên thì 3 chia hết cho (n - 3) hay (n-3) ÎƯ(3)
=> ( n – 3) Î{-3;-1;1;3} => n Î{-6;-4;-2;0}
b) ( n – 1) ÎƯ (3) = {-3;-1;1;3} => n Î{-2;0;2;4}
c) (3n +1) ÎƯ (4) {-4;-2;-1;1;2;4}
Vì n Î Z nên sau khi tính ta thu được nÎ{-1; 1}
Cho A = 3n+4/n-1
a) Tìm n để a là phân số
b) Tìm số nguyên n để a nhận giá trị nguyên
a) Để A là phân số
\(\Rightarrow n-1\ne0\)
\(\Rightarrow n\ne1\)
=> A là phân số khi \(n\ne1\)
b) Vì \(n\inℤ\)
\(\hept{\begin{cases}3n+4\inℤ\\n-1\inℤ\end{cases}}\)
mà \(A\inℤ\Leftrightarrow3n+4⋮n-1\)
\(\Rightarrow3n-3+7⋮n-1\)
\(\Rightarrow3\left(n-1\right)+7⋮n-1\)
Vì \(3\left(n-1\right)⋮n-1\)
nên \(7⋮n-1\)
\(\Rightarrow n-1\inƯ\left(7\right)\)
\(\Rightarrow n-1\in\left\{\pm1;\pm7\right\}\)
Lập bảng xét 4 trường hợp ta có :
\(n-1\) | \(1\) | \(-1\) | \(7\) | \(-7\) |
\(n\) | \(2\) | \(0\) | \(8\) | \(-6\) |
Vậy \(n\in\left\{2;0;8;-6\right\}\)