\(X^2+3X+1=\left(X+3\right)\sqrt{X^2+1}\) giải bằng cách đặt ẩn phụ giùm mình
Giải PT
a)\(8x^2-8x+3=\left(2x-1\right)\sqrt{8x^2-6x+3}\)
b)\(x^2+3x+1=\left(x+3\right)\sqrt{x^2+1}\)
c)\(x^3-3x^2+2\sqrt{\left(x+2\right)^3}-6x=0\)
GIẢI = CÁCH ĐẶT ẨN PHỤ KHÔNG HOÀN TOÀN
MONG CÁC BẠN GIẢI NHANH GIÚP MÌNH
câu a:
\(8x^2-6x+3-2x=\left(2x-1\right)\sqrt{8x^2-6x+3}\)
đặt \(t=\sqrt{8x^2-6x+3}\Leftrightarrow t^2=8x^2-6x+3\)phương trình trở thành
\(t^2-2x=\left(2x-1\right)t\Leftrightarrow t^2-\left(2x-1\right)t-2x=0\)
có \(\Delta=\left(2x-1\right)^2+8x=\left(2x+1\right)^2\Rightarrow\orbr{\begin{cases}t=-1\\t=2x\end{cases}}\)
\(t=-1\Rightarrow8x^2-6x+3=1\Leftrightarrow8x^2-6x+2=0VN\)\(t=2x\Rightarrow8x^2-6x+3=4x^2\Leftrightarrow4x^2-6x+3=0VN\)Câu b:
Đặt \(t=\sqrt{x^2+1}\Leftrightarrow t^2=x^2+1\left(t>0\right)\)
PT\(\Leftrightarrow t^2-\left(x+3\right)t+3x=0\)
có :\(\Delta=\left(x+3\right)^2-4.3x=\left(x-3\right)^2\Rightarrow\orbr{\begin{cases}t=3\\t=x\end{cases}}\)
\(t=3\Rightarrow9=x^2+1\Leftrightarrow x^2=8\Leftrightarrow\orbr{\begin{cases}x=2\sqrt{2}\\x=-2\sqrt{2}\end{cases}}\)\(t=x\Leftrightarrow x^2=x^2+1VN\)b) phương trình đã cho nhân đôi sau đó biến đổi tương đương:
\(\left[\sqrt{x^2+1}-\left(x+3\right)\right]^2=8\)
\(\Leftrightarrow\sqrt{x^2+1}-\left(x+3\right)=\pm2\sqrt{2}\)
c) \(PT\Leftrightarrow\left(x+2\right)^3+2\sqrt{\left(x+2\right)^3}=\left(3x+2\right)^2+2\left(3x+2\right)\)
xét: \(f\left(t\right)=t^2+2t\left(t>0\right)\)
\(f\left(t\right)=2t+2>0\)
\(\Rightarrow\sqrt{\left(x+2\right)^3}=3x+2\)
Tự lm nốt nhé @tran huu dinh
Giải PT:
a)\(2\left(x^2-3x+2\right)=3\sqrt{x^3+8}\)
b)\(2\left(x^2+2\right)=5\sqrt{x^3-1}\)
c)\(x^2-3x+1=\frac{5\sqrt{3}}{3}\sqrt{x^4+x^2+1}\)
MONG CÁC BẠN GIẢI NHANH GIÚP MÌNH
GIẢI = CÁCH ĐẶT ẨN PHỤ HOÀN TOÀN
a/ \(2\left(x^2-3x+2\right)=3\sqrt{x^3+8}\)
\(\Rightarrow2x^2-6x+4=3\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}\)
\(\Rightarrow\left(-2\right)\left(x+2\right)+2\left(x^2-2x+4\right)=3\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}\)
Chia 2 vế cho x2 - 2x + 4 ta được:
\(\left(-2\right).\frac{x+2}{x^2-2x+4}+2=3\sqrt{\frac{x+2}{x^2-2x+4}}\)
Đặt \(a=\sqrt{\frac{x+2}{x^2-2x+4}}\left(a\ge0\right)\) ta được:
\(-2a^2-3a+2=0\Rightarrow\left(1-2a\right)\left(a+2\right)=0\Rightarrow\orbr{\begin{cases}a=\frac{1}{2}\left(n\right)\\a=-2\left(l\right)\end{cases}}\)
\(a=\frac{1}{2}\Leftrightarrow\sqrt{\frac{x+2}{x^2-2x+4}}=\frac{1}{2}\Rightarrow\frac{x+2}{x^2-2x+4}=\frac{1}{4}\)
\(\Rightarrow x^2-6x-4=0\Rightarrow\orbr{\begin{cases}x=3+\sqrt{13}\\x=3-\sqrt{13}\end{cases}}\) (cái này tính denta là ra kết quả thôi)
Vậy có 2 nghiệm trên
câu b, c tương tự thôi
giải phương trình sau theo cách đặt 2 ẩn phụ \(\sqrt[3]{\left(x-1\right)^2}-2\sqrt[3]{x-1}-\left(x-5\right)\sqrt{x-8}-3x+31=0\)
ĐK: \(x\ge8\)
Đặt \(a=\sqrt[3]{x-1}\text{ (}a\ge\sqrt[3]{7}\text{)};\text{ }b=\sqrt{x-8}\text{ (}b\ge0\text{)}\Rightarrow x=b^2+8\)
\(a^3-b^2=x-1-\left(x-8\right)=7\text{ (*)}\)
\(pt\text{ thành }a^2-2a-\left(b^2+8-5\right)b-3\left(b^2+8\right)+31=0\)
\(\Leftrightarrow\left(a^2-2a\right)-\left(b^3+3b^2+3b\right)+7=0\)
\(\Leftrightarrow\left(a-1\right)^2-\left(b+1\right)^3+a^3-b^2=0\)
Đặt \(b+1=c\text{ (}c\ge1\text{)}\)
\(pt\text{ thành }a^3-c^3+\left(a-1\right)^2-\left(c-1\right)^2=0\)
\(\Leftrightarrow\left(a-c\right)\left(a^2+ac+c^2\right)+\left(a-c\right)\left(a+c-2\right)=0\)
\(\Leftrightarrow\left(a-c\right)\left[a^2+c^2+a+c+ac-2\right]=0\)
\(\Leftrightarrow a-c=0\text{ (do }a^2+c^2+a+c+ac-2>0\text{ với mọi }a\ge\sqrt[3]{7};c\ge1\text{)}\)
\(\Leftrightarrow a=c\Leftrightarrow a=b+1\)
Thay \(b=a-1\) vào \(\left(\text{*}\right)\)ta được
\(a^3-\left(a-1\right)^2=7\Leftrightarrow\left(a-2\right)\left(a^2+a+4\right)=0\)
\(\Leftrightarrow a-2=0\text{ hoặc }a^2+a+4=0\text{ (vô nghiệm)}\)
\(\Leftrightarrow a=2\)
\(\Rightarrow\sqrt[3]{x-1}=2\Leftrightarrow x=9\)
Kết luận: \(x=9\).
\(\sqrt{x+1}+2\left(x+1\right)=x-1+\sqrt{1-x}+3\sqrt{1-x^2}\)
giải phương trình bằng cách đặt ẩn phụ help me
Đặt \(u=\sqrt{x+1};t=\sqrt{1-x};\text{đ}k:-1\le x\le1\)
Phương trình trở thành:
\(u+2u^2=-t^2+t+3ut\Leftrightarrow\left(u-t\right)^2+u\left(u-t\right)+\left(u-t\right)=0\)
\(\Leftrightarrow\left(u-t\right)\left(2u-t+1\right)=0\Leftrightarrow\orbr{\begin{cases}u=t\\2u+1=t\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+1}=\sqrt{1-x}\\2\sqrt{x+1}+1=\sqrt{1-x}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{-24}{25}\end{cases}}}\)
mình dùng cách khác nhé :((
\(\sqrt{x+1}+2\left(x+1\right)=x-1+\sqrt{1-x}+3\sqrt{1-x^2}\left(đk:-1\le x\le1\right)\)
\(< =>\sqrt{x+1}-1+2x+2-3=x-1+\sqrt{1-x}-1+3\sqrt{1-x^2}-3\)
\(< =>\frac{x}{\sqrt{x+1}+1}+2x-1-x+1=-\frac{x}{\sqrt{1-x}+1}+\frac{9\left(1-x^2-1\right)}{3\sqrt{1-x^2}+3}\)
\(< =>\frac{x}{\sqrt{x+1}+1}+x+\frac{x}{\sqrt{1-x}+1}+\frac{9x^2}{3\sqrt{1-x^2}+3}=0\)
\(< =>x\left(\frac{1}{\sqrt{x+1}+1}+1+\frac{1}{\sqrt{1+x}+1}+\frac{9x}{3\sqrt{1-x^2}+3}\right)=0< =>x=0\)
rồi đến đây dùng đk đánh giá cái ngoặc khác 0 là ok
Giải phương trình bằng cách đặt ẩn phụ
1, \(\left(4x+2\right)\sqrt{x+8}=3x^2+7x+8\)
2, \(x^2+4x+1-2x\sqrt{3x+1}=\sqrt{3x+1}\)
3, \(3x^2+2x+3=\left(3x+1\right)\sqrt{x^2+3}\)
Câu 1:
ĐK: \(x\geq -8\)
Đặt \(\sqrt{x+8}=a(a\geq 0)\) thì pt tương đương với:
\((4x+2)a=3x^2+6x+(x+8)=3x^2+6x+a^2\)
\(\Leftrightarrow 3x^2+6x+a^2-4ax-2a=0\)
\(\Leftrightarrow (4x^2-4ax+a^2)-x^2+6x-2a=0\)
\(\Leftrightarrow (2x-a)^2+2(2x-a)-x^2+2x=0\)
\(\Leftrightarrow (2x-a)^2+2(2x-a)+1-(x^2-2x+1)=0\)
\(\Leftrightarrow (2x-a+1)^2-(x-1)^2=0\)
\(\Leftrightarrow (x-a+2)(3x-a)=0\)
\(\bullet \)Nếu \(x-a+2=0\Leftrightarrow x+2=a\Rightarrow (x+2)^2=a^2=x+8\)
\(\Leftrightarrow x^2+3x+4=0\Rightarrow \left[\begin{matrix} x=1\\ x=-4\end{matrix}\right.\) . Ở đây chỉ có TH $x=1$ thỏa mãn còn $x=-4$ bị loại vì $x+2=a\geq 0$
\(\bullet \) Nếu \(3x-a=0\Rightarrow 3x=a\Rightarrow 9x^2=a^2=x+8\)
\(\Leftrightarrow 9x^2-x-8=0\Rightarrow \left[\begin{matrix} x=1\\ x=\frac{-8}{9}\end{matrix}\right.\). Ở đây chỉ có TH $x=1$ thỏa mãn còn $x=-\frac{8}{9}$ loại vì \(9x=a\geq 0\rightarrow x\geq 0\)
Vậy PT có nghiệm duy nhất $x=1$
Câu 2:
ĐK: \(x\geq \frac{-1}{3}\)
Đặt \(\sqrt{3x+1}=a(a\geq 0)\). Khi đó pt đã cho tương đương với:
\(x^2+x+(3x+1)-2x\sqrt{3x+1}=\sqrt{3x+1}\)
\(\Leftrightarrow x^2+x+a^2-2ax=a\)
\(\Leftrightarrow (x^2+a^2-2ax)+(x-a)=0\)
\(\Leftrightarrow (x-a)^2+(x-a)=0\Leftrightarrow (x-a)(x-a+1)=0\)
\(\Rightarrow \left[\begin{matrix} x=a\\ x+1=a\end{matrix}\right.\)
Nếu \(x=a=\sqrt{3x+1}\Rightarrow \left\{\begin{matrix} x\geq 0\\ x^2=3x+1\end{matrix}\right.\Rightarrow x=\frac{3+\sqrt{13}}{2}\) (t/m)
Nếu \(x+1=a=\sqrt{3x+1}\Rightarrow \left\{\begin{matrix} x\geq -1\\ (x+1)^2=3x+1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq -1\\ x^2-x=0\end{matrix}\right.\)
\(\Rightarrow x=0\) hoặc $x=1$
Vậy.........
Câu 3:
Đặt \(\sqrt{x^2+3}=a(a\geq 0)\)
PT đã cho tương đương với:
\((x^2+3)+2x^2+2x=(3x+1)\sqrt{x^2+3}\)
\(\Leftrightarrow a^2+2x^2+2x=(3x+1)a\)
\(\Leftrightarrow a^2+2x^2+2x-3ax-a=0\)
\(\Leftrightarrow (a^2+4x^2-4ax)+2x-a-2x^2+ax=0\)
\(\Leftrightarrow (a-2x)^2-(a-2x)+x(a-2x)=0\)
\(\Leftrightarrow (a-2x)(a-x-1)=0\) \(\Rightarrow \left[\begin{matrix} a=2x\\ a=x+1\end{matrix}\right.\)
Nếu \(2x=a=\sqrt{x^2+3}\Rightarrow \left\{\begin{matrix} x\geq 0\\ 4x^2=x^2+3\end{matrix}\right.\Rightarrow x=1\) (t/m)
Nếu \(x+1=a=\sqrt{x^2+3}\Rightarrow \left\{\begin{matrix} x\geq -1\\ (x+1)^2=x^2+3\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq -1\\ 2x=2\end{matrix}\right.\Rightarrow x=1\)
Vậy pt có nghiệm duy nhất $x=1$
giải pt vô tỉ sau bằng phương pháp đặt ẩn phụ
a)\(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)
b)\(\sqrt[3]{x+5}+\sqrt[3]{4-x}=\sqrt[3]{x+24}\)
a)\(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)
\(\Leftrightarrow3\left(\dfrac{2x^2+1-1}{\sqrt{2x^2+1}+1}\right)-x\left(1+3x+8\sqrt{2x^2+1}\right)=0\)
\(\Leftrightarrow\dfrac{6x^2}{\sqrt{2x^2+1}+1}-x\left(1+3x+8\sqrt{2x^2+1}\right)=0\)
\(\Leftrightarrow x\left(\dfrac{6x}{\sqrt{2x^2+1}+1}-\left(1+3x+8\sqrt{2x^2+1}\right)\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\\dfrac{6x}{\sqrt{2x^2+1}+1}=1+3x+8\sqrt{2x^2+1}\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}a=\sqrt{2x^2+1}\\b=3x\end{matrix}\right.\left(a>0\right)\) thì
\(pt\left(2\right)\Leftrightarrow\)\(\dfrac{2b}{a+1}=1+b+8a\)
\(\Rightarrow\left\{{}\begin{matrix}a=-17\\b=120\end{matrix}\right.;\left\{{}\begin{matrix}a=-8\\b=49\end{matrix}\right.;\left\{{}\begin{matrix}a=-5\\b=26\end{matrix}\right.;\left\{{}\begin{matrix}a=-2\\b=5\end{matrix}\right.;\left\{{}\begin{matrix}a=-0\\b=1\end{matrix}\right.\) (loại vì \(a>0\))
Hay pt vô nghiệm
phần a liên hợp nhưng cx có yếu tố đặt ẩn là done r` nhé ;v còn phần b dg nghĩ có lẽ liên hợp nốt mà chủ thớt khó quá:v
e có 1 cách ngoài liên hợp cho câu b, rất đơn giản( nhưng dễ nhầm ) , đó là lập phương liên tiếp :v =))
giải phương trình sau bằng phương pháp đặt ẩn phụ:
1) \(2\left(3x+5\right)\sqrt{x^2+9}=3x^2+2x+30\)
2) \(2\sqrt[3]{x-2}+\sqrt{x+1}=3\)
Giải phương trình bằng phương pháp đặt ẩn phụ
\(3x^2+2x+7=3\left(x+1\right)\sqrt{x^2+3}\)
Giải pt theo cách đặt ẩn phụ
\(\left(x+4\right)^2-6\sqrt{x^3+3x}=13\)