Bài 1: Căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hiếu Cao Huy

giải pt vô tỉ sau bằng phương pháp đặt ẩn phụ

a)\(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)

b)\(\sqrt[3]{x+5}+\sqrt[3]{4-x}=\sqrt[3]{x+24}\)

Lightning Farron
18 tháng 7 2017 lúc 18:58

a)\(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)

\(\Leftrightarrow3\left(\dfrac{2x^2+1-1}{\sqrt{2x^2+1}+1}\right)-x\left(1+3x+8\sqrt{2x^2+1}\right)=0\)

\(\Leftrightarrow\dfrac{6x^2}{\sqrt{2x^2+1}+1}-x\left(1+3x+8\sqrt{2x^2+1}\right)=0\)

\(\Leftrightarrow x\left(\dfrac{6x}{\sqrt{2x^2+1}+1}-\left(1+3x+8\sqrt{2x^2+1}\right)\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\\dfrac{6x}{\sqrt{2x^2+1}+1}=1+3x+8\sqrt{2x^2+1}\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}a=\sqrt{2x^2+1}\\b=3x\end{matrix}\right.\left(a>0\right)\) thì

\(pt\left(2\right)\Leftrightarrow\)\(\dfrac{2b}{a+1}=1+b+8a\)

\(\Rightarrow\left\{{}\begin{matrix}a=-17\\b=120\end{matrix}\right.;\left\{{}\begin{matrix}a=-8\\b=49\end{matrix}\right.;\left\{{}\begin{matrix}a=-5\\b=26\end{matrix}\right.;\left\{{}\begin{matrix}a=-2\\b=5\end{matrix}\right.;\left\{{}\begin{matrix}a=-0\\b=1\end{matrix}\right.\) (loại vì \(a>0\))

Hay pt vô nghiệm

Nguyễn Huy Thắng
18 tháng 7 2017 lúc 19:14

phần a liên hợp nhưng cx có yếu tố đặt ẩn là done r` nhé ;v còn phần b dg nghĩ có lẽ liên hợp nốt mà chủ thớt khó quá:v

Neet
18 tháng 7 2017 lúc 19:36

e có 1 cách ngoài liên hợp cho câu b, rất đơn giản( nhưng dễ nhầm ) , đó là lập phương liên tiếp :v =))


Các câu hỏi tương tự
ITACHY
Xem chi tiết
Nguyễn Trung Nghĩa
Xem chi tiết
NoChu Đại Nhân
Xem chi tiết
Nguyễn Châu Mỹ Linh
Xem chi tiết
Alice Sophia
Xem chi tiết
Hoàng Thùy Linh
Xem chi tiết
Đỗ Thủy Trúc
Xem chi tiết
Đỗ Thủy Trúc
Xem chi tiết
Trx Bình
Xem chi tiết