Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Bình Yên

Giải phương trình bằng cách đặt ẩn phụ

1, \(\left(4x+2\right)\sqrt{x+8}=3x^2+7x+8\)

2, \(x^2+4x+1-2x\sqrt{3x+1}=\sqrt{3x+1}\)

3, \(3x^2+2x+3=\left(3x+1\right)\sqrt{x^2+3}\)

Akai Haruma
12 tháng 1 2019 lúc 17:28

Câu 1:

ĐK: \(x\geq -8\)

Đặt \(\sqrt{x+8}=a(a\geq 0)\) thì pt tương đương với:

\((4x+2)a=3x^2+6x+(x+8)=3x^2+6x+a^2\)

\(\Leftrightarrow 3x^2+6x+a^2-4ax-2a=0\)

\(\Leftrightarrow (4x^2-4ax+a^2)-x^2+6x-2a=0\)

\(\Leftrightarrow (2x-a)^2+2(2x-a)-x^2+2x=0\)

\(\Leftrightarrow (2x-a)^2+2(2x-a)+1-(x^2-2x+1)=0\)

\(\Leftrightarrow (2x-a+1)^2-(x-1)^2=0\)

\(\Leftrightarrow (x-a+2)(3x-a)=0\)

\(\bullet \)Nếu \(x-a+2=0\Leftrightarrow x+2=a\Rightarrow (x+2)^2=a^2=x+8\)

\(\Leftrightarrow x^2+3x+4=0\Rightarrow \left[\begin{matrix} x=1\\ x=-4\end{matrix}\right.\) . Ở đây chỉ có TH $x=1$ thỏa mãn còn $x=-4$ bị loại vì $x+2=a\geq 0$

\(\bullet \) Nếu \(3x-a=0\Rightarrow 3x=a\Rightarrow 9x^2=a^2=x+8\)

\(\Leftrightarrow 9x^2-x-8=0\Rightarrow \left[\begin{matrix} x=1\\ x=\frac{-8}{9}\end{matrix}\right.\). Ở đây chỉ có TH $x=1$ thỏa mãn còn $x=-\frac{8}{9}$ loại vì \(9x=a\geq 0\rightarrow x\geq 0\)

Vậy PT có nghiệm duy nhất $x=1$

Akai Haruma
12 tháng 1 2019 lúc 17:36

Câu 2:
ĐK: \(x\geq \frac{-1}{3}\)

Đặt \(\sqrt{3x+1}=a(a\geq 0)\). Khi đó pt đã cho tương đương với:

\(x^2+x+(3x+1)-2x\sqrt{3x+1}=\sqrt{3x+1}\)

\(\Leftrightarrow x^2+x+a^2-2ax=a\)

\(\Leftrightarrow (x^2+a^2-2ax)+(x-a)=0\)

\(\Leftrightarrow (x-a)^2+(x-a)=0\Leftrightarrow (x-a)(x-a+1)=0\)

\(\Rightarrow \left[\begin{matrix} x=a\\ x+1=a\end{matrix}\right.\)

Nếu \(x=a=\sqrt{3x+1}\Rightarrow \left\{\begin{matrix} x\geq 0\\ x^2=3x+1\end{matrix}\right.\Rightarrow x=\frac{3+\sqrt{13}}{2}\) (t/m)

Nếu \(x+1=a=\sqrt{3x+1}\Rightarrow \left\{\begin{matrix} x\geq -1\\ (x+1)^2=3x+1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq -1\\ x^2-x=0\end{matrix}\right.\)

\(\Rightarrow x=0\) hoặc $x=1$

Vậy.........

Akai Haruma
12 tháng 1 2019 lúc 17:44

Câu 3:

Đặt \(\sqrt{x^2+3}=a(a\geq 0)\)

PT đã cho tương đương với:

\((x^2+3)+2x^2+2x=(3x+1)\sqrt{x^2+3}\)

\(\Leftrightarrow a^2+2x^2+2x=(3x+1)a\)

\(\Leftrightarrow a^2+2x^2+2x-3ax-a=0\)

\(\Leftrightarrow (a^2+4x^2-4ax)+2x-a-2x^2+ax=0\)

\(\Leftrightarrow (a-2x)^2-(a-2x)+x(a-2x)=0\)

\(\Leftrightarrow (a-2x)(a-x-1)=0\) \(\Rightarrow \left[\begin{matrix} a=2x\\ a=x+1\end{matrix}\right.\)

Nếu \(2x=a=\sqrt{x^2+3}\Rightarrow \left\{\begin{matrix} x\geq 0\\ 4x^2=x^2+3\end{matrix}\right.\Rightarrow x=1\) (t/m)

Nếu \(x+1=a=\sqrt{x^2+3}\Rightarrow \left\{\begin{matrix} x\geq -1\\ (x+1)^2=x^2+3\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq -1\\ 2x=2\end{matrix}\right.\Rightarrow x=1\)

Vậy pt có nghiệm duy nhất $x=1$

Tâm Trà
2 tháng 12 2018 lúc 10:39

undefined

Nguyễn Thị Bình Yên
12 tháng 1 2019 lúc 6:35

@Ma Đức Minh@Nguyễn Việt Lâm@Akai Haruma@Phùng Tuệ Minh@Ribi Nkok Ngok@DƯƠNG PHAN KHÁNH DƯƠNG@Mikarin Suzuki

Akai Haruma
12 tháng 1 2019 lúc 17:47

Với những bài này, nếu bạn không biết làm sao để tách ghép đưa về dạng tích bằng $0$ thì có thể coi PT mà ta vừa biến đổi tương đương về dạng pt bậc hai một ẩn $x$ hoặc $a$, từ đó thiết lập Delta để tìm ra mối quan hệ giữa $x,a$


Các câu hỏi tương tự
bach nhac lam
Xem chi tiết
Ly nguyễn gia
Xem chi tiết
Kim Trí Ngân
Xem chi tiết
Kim Trí Ngân
Xem chi tiết
Trần Hoàng Đạt
Xem chi tiết
Đinh Doãn Nam
Xem chi tiết
Coodinator  Huy Toàn
Xem chi tiết
Trần Việt Khoa
Xem chi tiết
Kim Trí Ngân
Xem chi tiết